Page Replacement
Algorithms

Operating Systems

Virtual Memory Management

» Background

* Demand Paging

* Demand Segmentation

» Paging Considerations

» Page Replacement Algorithms
» Virtual Memory Policies

What is a page frame?
* When using paging, the main memory is partitioned
into equal fixed-size chunks that are relatively small,
and
* Each process is also divided into small fixed-size
chunks of the same size.
* Then, the chunks of a process, known as pages,
* are assigned to available chunks of memory, known

as frames or page frames.
Paging:- In computer operating systems, paging iIs one of the

memory-management schemes by which a computer can store and

retrieve data from secondary storage for use in main memory.

- What is a page table?

= A page table is the data structure used by a virtual memory

system in a computer operating system to store the mapping

between virtual addresses and physical addresses.
= Virtual addresses are used by the accessing process, while
physical addresses are used by the hardware or more
specifically to the RAM.
- Page fault: The main functions of paging are performed
when a program tries to access pages that are not
currently mapped to physical memory (RAM). This

situation is known as a page fault.

Page Replacement Algorithms

« Want lowest page-fault rate.

» Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults and page

replacements on that string.

e In all our examples, we use a few recurring

reference strings.

Graph of Page Faults vs. the Number of Frames

—
(@)]

n 14 \
3 12 \
4)]
g 10
O
° 8
g
6
g e —
C4 e ———
2
1 2 o 4 5 6

number of frames

The FIFO Policy

« Treats page frames allocated to a process as a circular
buffer:

s When the buffer is full, the oldest page is replaced. Hence
first-in, first-out:

A frequently used page is often the oldest, so it will be
repeatedly paged out by FIFO.

s Simple to implement:

requires only a pointer that circles through the page
frames of the process.

FIFO Page Replacement

reference string
7 01 2 0 83 0 4 2 3 0 3 21 2 01 7 0 1

ol A = 20 |2| |4] |4] |4] |0 0 |0 7

page frames

First-In-First-Out (FIFO) Algorithm

» Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
» FIFO Replacement manifests Belady's Anomaly:
o more frames = more page faults

All pages frames initially empty

o 1 2 3 0 1 4 0 1 2 3 4
Youngest page ol1]12|3|0fj1]|4|4]|4]2]3]|3
ol1|213joj1|1]11|4]|2]2
Oldest page ol1|1213|]0|J0]J]Oo]1]4] 4
P P P P P P P P P 9 Page faults
(a)
0 2 3 01 4 0 1 2 3 4
Youngest page 0 213|313 |4|0|1]|2]|3]|4
11212121340 1]12]3
Oldest page o111 |2|3|4|]0]|1]|2
ojojo|1]2|3|4]|]0]|1
P P P P P P P P P P 10 Page faults

(b)

Fig. 4-24. Belady’s anomaly. (a) FIFO with three page frames.
(b) FIFO with four page frames. The P’s show which page refer-
ences cause page faults.

FIFO Illustrating Belady's Anomaly

16
« 14
S
8 12 o
(b]
g 10
o
° 8
86
- N |
S 4

2

1 o 3 4 5 6 7

number of frames

Optimal Page Replacement
« The Optimal policy selects for replacement the
page that will not be used for longest period of

time.

» Impossible to implement (need to know the future)
but serves as a standard to compare with the other

algorithms we shall study.

Optimal Page Replacement

reference string
7012080423032 120170 1

IR 2 |2 2 2 /
0 101 (0] (0] |4 0 0 0
L | 3 1 1

page frames

Optimal Algorithm

- Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
* 4 frames example

1
2 6 page faults
3

415
« How do you know future use? You don'’t!

 Used for measuring how well your algorithm
performs.

The LRU Policy

» Replaces the page that has not been
referenced for the longest time:

s By the principle of locality, this should be
the page least likely to be referenced in the
near future.

s performs nearly as well as the optimal
policy.

LRU Page Replacement

reference string

/7 0 1 2 0 3 0 4 2 3 O 3 2 1 2 0 1 7 0 1
4| 4] 4] [0
o] |o] o] |0} o] o] |3] |3 ol o]
B E i

page frames

Least Recently Used (LRU) Algorithm

» Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

11|11(|1]|2]]|5
21121121 2]]|2

8 page faults
31|5(|5]||4]|4
41141131313

Comparison of OPT with LRU

- Example: A process of 5 pages with an OS that
fixes the resident set size to 3.

Page address
dreem 2 3 2 1 5 2 4 5 3 2 5 2

e 0w Fom [BoE BaE R BuE R EE R BE] B
OPT B O | s a P R P e P (B
I = B = B B 5 B (S

F F F
B B B B P B B B B e [
LRU i FaE EEE e (S P55 sR ESE B [
E BEE BEE BEE BEE B B BEE B

F F F F

Comparison of FIFO with LRU

Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
2 2 2 2 2 2 2 2 3 3 3 3
LRU 3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4 D D)]

F F F F
7 2 2 2 5 5 5 5 3 3 3 3
FIFO 3 3 3 3 7])) ;) B 5 5
1 1 1 4 4 4 4 3)]
F F F F F F

» LRU recognizes that pages 2 and 5 are referenced
more frequently than others but FIFO does not.

Implementation of the LRU Policy

« Each page could be tagged (in the page table entry) with the
time at each memory reference.

« The LRU page is the one with the smallest time value (needs to
be searched at each page fault).

« This would require expensive hardware and a great deal of
overhead.

« Consequently very few computer systems provide sufficient
hardware support for true LRU replacement policy.

» Other algorithms are used instead.

LRU Implementations

« Counter implementation:

= Every page entry has a counter; every time a page is
referenced through this entry, copy the clock into the
counter.

s When a page needs to be changed, look at the counters to
determine which are to change.

 Stack implementation - keep a stack of page
numbers in a double link form:
= Page referenced:

move it to the top

requires 6 pointers to be changed

s No search for replacement.

Use of a stack to implement LRU

 Stack implementation — keep a stack of page numbers in
a double link form:

— Page referenced:
* move it to the top
* requires 6 pointers to be changed

— No search for replacement — always take the bottom

one.
reference string
4 ve O re 1 O 1 =2 1 =2 e 1 =
= = T 1
a b
1 =2
O 1
7 O
Pk P s
stack stack
before after

The Clock (Second Chance) Policy

The set of frames candidate for replacement is considered
as a circular buffer.

When a page is replaced, a pointer is set to point to the next
frame in buffer.

A reference bit for each frame is set to 1 whenever:
o a page is first loaded into the frame.
o the corresponding page is referenced.

When it is time to replace a page, the first frame

encountered with the reference bit set to 0 is replaced:

s During the search for replacement, each reference bit set
to 1 is changed to 0.

Clock Page-Replacement Algorithm

next
victim

reference
bits

O

0]

=

1

pages

t#%#b

v

N

circular queue of pages

reference pages
bits

O

O

o)

SR

Y
Voo

circular queue of pages

(b)

The Clock Policy: Another Example

next frame
pointer

page 222

(a) State of buffer just prior to a page replacement (b) State of buffer just after the next page replacement

Comparison of Clock with FIFO and LRU (1)

Page address
stream 2 3 2 1 5 2 4 5 3 2 5 2
2 2 2 2 2 2 2 2 3 3 3 3
LRU 3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4 2) 2
F F F F

7 2 7] 2 5 5 5 5 3] 3 3
FIFO 3 3 3 5 o))) o 5 5
1 1 1 4 4 4 4 4 2
F F F F F F
2 2 2% | pf 2F S 5% | 5% | pf 5% R 3% | p| 3% [pf 3%
CLOCK —» R RE 3*| o 3 2% 20 ey v 2 2
- - 1% 1 | 1 4% 4% 4 4 5 5%

F F F F F

 Asterisk indicates that the corresponding use bit is set to 1.
« The arrow indicates the current position of the pointer.

» Note that the clock policy is adept at protecting frames 2 and 5 from
replacement.

Comparison of Clock with FIFO and LRU (2)

 Numerical experiments tend to show that performance of
Clock is close to that of LRU.

« Experiments have been performed when the number of
frames allocated to each process is fixed and when pages
local to the page-fault process are considered for
replacement:

s When few (6 to 8) frames are allocated per process,

there is almost a factor of 2 of page faults between LRU
and FIFO.

s This factor reduces close to 1 when several (more than
12) frames are allocated. (But then more main memory
is needed to support the same level of
multiprogramming).

Fixed-Allocation, Local Page Replacement

. 40A
g . FIFO
S 35
£ 43| CLOCK
=
£ 5 LRU
T 20
-4
215 OFT
2 10
=
F s
0 —>
‘ 8 10 12 14

Number of Frames Allocated

Counting-based Algorithms

« Keep a counter of the number of references that
have been made to each page.

« Two possibilities: Least/Most Frequently Used
(LFU/MFU).

« LFU Algorithm: replaces page with smallest count;
others were and will be used more.

« MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used.

