
Operating Systems

Page Replacement
Algorithms

Virtual Memory Management

• Background

• Demand Paging

• Demand Segmentation

• Paging Considerations

• Page Replacement Algorithms

• Virtual Memory Policies

What is a page frame?

• When using paging, the main memory is partitioned

into equal fixed-size chunks that are relatively small,

and

• Each process is also divided into small fixed-size

chunks of the same size.

• Then, the chunks of a process, known as pages,

• are assigned to available chunks of memory, known

as frames or page frames.

Paging:- In computer operating systems, paging is one of the

memory-management schemes by which a computer can store and

retrieve data from secondary storage for use in main memory.

• What is a page table?

▫ A page table is the data structure used by a virtual memory

system in a computer operating system to store the mapping

between virtual addresses and physical addresses.

▫ Virtual addresses are used by the accessing process, while

physical addresses are used by the hardware or more

specifically to the RAM.

• Page fault: The main functions of paging are performed

when a program tries to access pages that are not

currently mapped to physical memory (RAM). This

situation is known as a page fault.

Page Replacement Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a particular

string of memory references (reference string)

and computing the number of page faults and page

replacements on that string.

• In all our examples, we use a few recurring

reference strings.

Graph of Page Faults vs. the Number of Frames

The FIFO Policy

• Treats page frames allocated to a process as a circular
buffer:

▫ When the buffer is full, the oldest page is replaced. Hence
first-in, first-out:

A frequently used page is often the oldest, so it will be
repeatedly paged out by FIFO.

▫ Simple to implement:

requires only a pointer that circles through the page
frames of the process.

FIFO Page Replacement

First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• FIFO Replacement manifests Belady’s Anomaly:

▫ more frames more page faults

FIFO Illustrating Belady’s Anomaly

Optimal Page Replacement

• The Optimal policy selects for replacement the

page that will not be used for longest period of

time.

• Impossible to implement (need to know the future)

but serves as a standard to compare with the other

algorithms we shall study.

Optimal Page Replacement

Optimal Algorithm

• Reference string : 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 4 frames example

• How do you know future use? You don’t!
• Used for measuring how well your algorithm

performs.

1

2

3

4

6 page faults

4 5

The LRU Policy

• Replaces the page that has not been
referenced for the longest time:
▫ By the principle of locality, this should be

the page least likely to be referenced in the
near future.

▫ performs nearly as well as the optimal
policy.

LRU Page Replacement

Least Recently Used (LRU) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

8 page faults

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

Comparison of OPT with LRU

• Example: A process of 5 pages with an OS that
fixes the resident set size to 3.

Comparison of FIFO with LRU

• LRU recognizes that pages 2 and 5 are referenced
more frequently than others but FIFO does not.

Implementation of the LRU Policy
• Each page could be tagged (in the page table entry) with the

time at each memory reference.
•
• The LRU page is the one with the smallest time value (needs to

be searched at each page fault).

• This would require expensive hardware and a great deal of
overhead.

• Consequently very few computer systems provide sufficient
hardware support for true LRU replacement policy.

• Other algorithms are used instead.

LRU Implementations

• Counter implementation:
▫ Every page entry has a counter; every time a page is

referenced through this entry, copy the clock into the
counter.

▫ When a page needs to be changed, look at the counters to
determine which are to change.

• Stack implementation – keep a stack of page
numbers in a double link form:
▫ Page referenced:

move it to the top

requires 6 pointers to be changed

▫ No search for replacement.

Use of a stack to implement LRU

• Stack implementation – keep a stack of page numbers in
a double link form:

– Page referenced:

• move it to the top

• requires 6 pointers to be changed

– No search for replacement – always take the bottom
one.

The Clock (Second Chance) Policy

• The set of frames candidate for replacement is considered
as a circular buffer.

• When a page is replaced, a pointer is set to point to the next
frame in buffer.

• A reference bit for each frame is set to 1 whenever:
▫ a page is first loaded into the frame.
▫ the corresponding page is referenced.

• When it is time to replace a page, the first frame
encountered with the reference bit set to 0 is replaced:
▫ During the search for replacement, each reference bit set

to 1 is changed to 0.

Clock Page-Replacement Algorithm

The Clock Policy: Another Example

Comparison of Clock with FIFO and LRU (1)

• Asterisk indicates that the corresponding use bit is set to 1.

• The arrow indicates the current position of the pointer.

• Note that the clock policy is adept at protecting frames 2 and 5 from
replacement.

Comparison of Clock with FIFO and LRU (2)

• Numerical experiments tend to show that performance of
Clock is close to that of LRU.

• Experiments have been performed when the number of
frames allocated to each process is fixed and when pages
local to the page-fault process are considered for
replacement:
▫ When few (6 to 8) frames are allocated per process,

there is almost a factor of 2 of page faults between LRU
and FIFO.

▫ This factor reduces close to 1 when several (more than
12) frames are allocated. (But then more main memory
is needed to support the same level of
multiprogramming).

Fixed-Allocation, Local Page Replacement

Counting-based Algorithms

• Keep a counter of the number of references that
have been made to each page.

• Two possibilities: Least/Most Frequently Used
(LFU/MFU).

• LFU Algorithm: replaces page with smallest count;
others were and will be used more.

• MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used.

