
Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition,

Chapter 9: Virtual
Memory

9.2 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

§ Background
§ Demand Paging
§ Copy-on-Write
§ Translation Lookaside Buffer
§ Page Replacement
§ Allocation of Frames
§ Thrashing

9.3 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Objectives

§ To describe the benefits of a virtual
memory system
§ One of the most important of all concepts related

to Memory Management is Virtual Memory.
Ø To explain the concepts of demand

paging, page-replacement algorithms, and
allocation of page frames

Ø To discuss the principle of the working-
set model

9.4 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Background
§ Virtual memory – separation of user logical memory from

physical memory.
§ Virtual Memory refers to the concept whereby a process

with a larger size than available memory can be loaded
and executed by loading the process in parts.

§ The program memory is divided into pages and the
available physical memory into frames.

§ If a process attempts to access a page that is not
available in the main memory and the information of which
does not exist in its page table, a page fault occurs.

§ The Operating System now takes care of swapping this
page in to the main memory from the backing store.

§ Only part of the program needs to be in memory for
execution

§ Logical address space can therefore be much larger than
physical address space

§ Allows address spaces to be shared by several processes
§ Allows for more efficient process creation

9.5 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

§ Virtual memory can be implemented via:
§ Demand paging

§ Demand Paging refers to loading a page of
program code from disk into memory as and
when it is required by the program.

§ Demand segmentation

9.6 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Virtual memory
§ The data and the instructions are read from the main

memory and then after the execution of the instruction is
over,
§ they are written back onto the memory.

§ But what happens when the program in consideration is
larger than the size of the available memory?
§ Virtual Memory is a concept that addresses this issue

by allowing a program than is even larger than the size
of the available free memory to be loaded and executed
and eliminate the chances of external fragmentation.

§ The Operating System maps the programmer's virtual
addresses to real hardware storage addresses.

§ Mapping implies the correspondence between the virtual
addresses and the physical addresses using virtual
translation mechanisms as decided by the Operating
System.

9.7 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

§ The program memory is divided into pages and the available
physical memory into frames. The page size is always equal to
the frame size.
§ The page size is generally in a power of 2 to avoid the

calculation involved to get the page number and the offset
from the CPU generated address.

§ In the virtual memory systems, the addresses that the application
programs deal with are known as virtual addresses.
§ These virtual addresses used by the application program are

mapped to physical addresses by translation of these virtual
addresses.

§ This is taken care of by the virtual memory system's address
translation mechanism by mapping these virtual addresses to
frame addresses using the Page Map Tables.

§ This is what we call the physical address in the main
memory that can be used to refer to the contents from the
memory.

§ The process address space implies the number of unique
addresses needed to hold both the process and its data.
 The virtual address space refers to the memory space of
the virtual addresses.

9.8 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical
Memory

9.9 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Virtual-address Space

9.10 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Shared Library Using Virtual
Memory

9.11 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Advantages and Disadvantages of
Virtual Memory Systems

§ The primary advantage or objective of Virtual Memory systems is
the ability to load and execute a process that requires a larger
amount of memory than what is available by loading the process
in parts and then executing them.
§ The disadvantage is that Virtual Memory systems tend to be slow
and require additional support from the system's hardware for
address translations.
§ It can be said that the execution speed of a process in a
Virtual Memory system can equal, but never exceed, the execution
speed of the same process with Virtual Memory turned off.
§ Hence, we do not have an advantage with respect to the
execution speed of the process.
§ The advantage lies in the ability of the system to eliminate
external fragmentation.
§ The other disadvantage of Virtual Memory systems is the possibility
of Thrashing due to excessive Paging and Page faults.

§ In may be noted that Trash Point is a point after which the
execution of a process comes to a halt;
§ the system is busier paging pages in and out of the memory
than executing them.

9.12 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Demand Paging
§ In Virtual Memory Systems the pages are not loaded in the

memory until they are "demanded" by a process; hence the
name, Demand Paging.

§ Demand paging allows the various parts of a process to be
brought into physical memory as the process needs them to
execute.

§ In virtual memory systems, demand paging is a type of
swapping in which pages of data are not copied from disk
to RAM until they are needed.

§ Bring a page into memory only when it is needed
§ Less I/O needed
§ Less memory needed
§ Faster response
§ More users

§ Page is needed reference to it
§ invalid reference abort
§ not-in-memory bring to memory

9.13 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

§ Lazy swapper – never swaps a page into memory
unless page will be needed
§ Swapper that deals with pages is a pager

§ How Demand Paging Works
§ When the CPU executes an instruction that is not available

in the memory, a Page Fault occurs.
§ This means a page is being referenced,
§ The Operating System is now responsible for bringing the

appropriate page into memory from the disk.
§ The total turnaround time of a process is divided into CPU

time and I/O time.
§ Disk I/O takes a longer time than CPU and the process

must wait until the page has been fetched from the disk.
§ A module of the Operating System called the Page Fault

Handler is given the control.
§ The information also includes the disk address of the page in

the backing storethe information needed to bring the required
page into the main memory from the backing store. The
information also includes the disk address of the page in the
backing store.

9.14 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous
Disk Space

9.15 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Valid-Invalid Bit
§ With each page table entry a valid–invalid bit is

associated
(v in-memory, i not-in-memory)

§ Initially valid–invalid bit is set to i on all entries
§ Example of a page table snapshot:

§ During address translation, if valid–invalid bit in page
table entry is i page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

9.16 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main
Memory

9.17 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Page Fault

§ If there is a reference to a page, first reference
to that page will trap to operating system:

§ page fault
§ Operating system looks at another table to decide:

§ Invalid reference abort
§ Just not in memory

§ Get empty frame
§ Swap page into frame
§ Reset tables
§ Set validation bit = v
§ Restart the instruction that caused the page fault

9.18 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Page Fault (Cont.)
§ Restart instruction

§ block move

§ auto increment/decrement location

9.19 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

9.20 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Performance of Demand Paging
§ Page Fault Rate 0 p 1.0

§ if p = 0 no page faults
§ if p = 1, every reference is a fault

§ Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
 + swap page out
 + swap page in
 + restart overhead

)

9.21 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Process Creation
Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

9.22 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Copy-on-Write
§ Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory

If either process modifies a shared page, only then the is
page copied

§ COW allows more efficient process creation as only
modified pages are copied

§ Free pages are allocated from a pool of zeroed-out pages

9.23 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Before Process 1 Modifies Page C

9.24 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

After Process 1 Modifies Page C

9.25 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

What happens if there is no free frame?

§ Page replacement – find some page in
memory, but not really in use, swap it out
§ algorithm
§ performance – want an algorithm which will

result in minimum number of page faults
§ Same page may be brought into memory

several times

9.26 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

26

Translation Lookaside Buffer (TLB)
§ Each virtual memory reference can cause two physical

memory accesses
§ One to fetch the page table
§ One to fetch the data

§ To overcome this problem a high-speed cache is set up
for page table entries
§ Called a Translation Lookaside Buffer (TLB)

§ Contains page table entries that have been most recently
used

9.27 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

27

Translation Lookaside Buffer

§ Given a virtual address, processor examines the TLB

§ If page table entry is present (TLB hit), the frame
number is retrieved and the real address is formed

§ If page table entry is not found in the TLB (TLB miss),
the page number is used to index the process page
table

§ First checks if page is already in main memory

§ If not in main memory, a page fault is issued

§ The TLB is updated to include the new page entry

9.28 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

28

9.29 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

29

9.30 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

30

9.31 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

31

9.32 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Page Replacement
§ Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

§ Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

§ Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory

9.33 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Need For Page Replacement

9.34 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Basic Page Replacement

1. Find the location of the desired page on
disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a
page replacement algorithm to select
a victim frame

3. Bring the desired page into the (newly)
free frame; update the page and frame
tables

4. Restart the process

9.35 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Page Replacement

9.36 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Page Replacement Algorithms

n Want lowest page-fault rate

n Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the number
of page faults on that string

n In all our examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3,
4, 5

9.37 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Graph of Page Faults Versus The Number of
Frames

9.38 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm
§ Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
§ 3 frames (3 pages can be in memory at a time per

process)

§ 4 frames

§ Belady’s Anomaly: more frames more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.39 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

FIFO Page Replacement

9.40 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.41 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Optimal Algorithm
n Replace page that will not be used for longest period of

time
n 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n How do you know this?
n Used for measuring how well your algorithm performs

1

2

3

4
6 page
faults

4 5

9.42 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Optimal Page Replacement

9.43 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Least Recently Used (LRU)
Algorithm

n Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

n Counter implementation
l Every page entry has a counter; every time

page is referenced through this entry, copy the
clock into the counter

l When a page needs to be changed, look at the
counters to determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.44 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

LRU Page Replacement

9.45 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

LRU Algorithm (Cont.)
n Stack implementation – keep a stack of page numbers in

a double link form:
l Page referenced:

4 move it to the top
4 requires 6 pointers to be changed

l No search for replacement

9.46 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Use Of A Stack to Record The Most Recent Page
References

9.47 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

LRU Approximation Algorithms
n Reference bit

l With each page associate a bit, initially = 0
l When page is referenced bit set to 1
l Replace the one which is 0 (if one exists)

4 We do not know the order, however
n Second chance

l Need reference bit
l Clock replacement
l If page to be replaced (in clock order) has reference

bit = 1 then:
4 set reference bit 0
4 leave page in memory
4 replace next page (in clock order), subject to same

rules

9.48 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Counting Algorithms
n Keep a counter of the number of references

that have been made to each page

n LFU Algorithm: replaces page with smallest
count

n MFU Algorithm: based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used

9.49 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Fixed Allocation

§ Equal allocation – For example, if there are 100
frames and 5 processes, give each process 20
frames.

§ Proportional allocation – Allocate according to the size
of process

m
S
spa

m
sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10
64

2

1

2

a

a

s
s
m

i

9.50 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Priority Allocation

§ Use a proportional allocation scheme using priorities
rather than size

§ If process Pi generates a page fault,
§ select for replacement one of its frames
§ select for replacement a frame from a process

with lower priority number

9.51 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Global vs. Local Allocation

§ Global replacement – process selects a
replacement frame from the set of all
frames; one process can take a frame from
another

§ Local replacement – each process selects
from only its own set of allocated frames

9.52 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Thrashing

§ If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
§ low CPU utilization
§ operating system thinks that it needs to

increase the degree of multiprogramming
§ another process added to the system

§ Thrashing a process is busy swapping pages in
and out

9.53 Silberschatz, Galvin and Gagne
©2009

Operating System Concepts – 8th Edition

Thrashing (Cont.)

