
THREADS (OPERATING SYSTEM)

Presented By : Prof. Chetan Solanki
CKPCET.



What is Thread ?

• A thread is a flow of execution through the
process code, with its own program counter,
system registers and stack.

• A thread is also called a light weight process.
Threads provide a way to improve application
performance through parallelism.

• Each thread belongs to exactly one process
and no thread can exist outside a process.



Single threaded Process and Multi-
threaded Process



Difference between Process and Threads :



Advantages of Threads

• Thread minimizes context switching time.

• Use of threads provides concurrency within a
process.

• Efficient communication.

• Economy- It is more economical to create and
context switch threads.

• Utilization of multiprocessor architectures to
a greater scale and efficiency.



Disadvantages of Threads

• Blocking of parent threads will stop all child 
thread.

• Security.



Types of Threads

• Threads are implemented in following two 
ways :

– User Level Threads (ULT)

– Kernel Level Threads (KLT)



User Level Threads (ULT)

• User level thread implement in user level
libraries, so thread switching does not need to
call operating system and to cause

• interrupt to the kernel.

• In fact, the kernel knows nothing about user
level threads and manages them as if they
were single-threaded process.



User Level Threads (ULT)

• Advantages of ULT
– User level threads does not require modification to

operating system.
– Easy to represent and manage.
– User level thread can run on any operating system.
– User level threads are fast and efficient.

• Disadvantages of ULT :
– There is a lack of coordination between threads and

operating system kernel.
– ULT require non-blocking system call (i.e.

Multithreaded kernel)



Kernel Level Threads (KLT)

• In this method, the kernel knows about and
manages the threads.

• No runtime system is needed in this case.

• Operating system kernel provides system call
to create and manage threads.



Kernel Level Threads (KLT)

• Advantages of KLT :
– Kernel can simultaneously schedule multiple threads from 

the same process on multiple processes.
– If one thread in a process is blocked the kernel can 

schedule another thread of the same process.
– Kernel routines themselves can multithreaded.

• Disadvantages of KLT :
– Kernel thread are generally slower to create and manage 

than the user threads.
– Kernel requires Thread Control Block (TCB) for each thread 

in the pool, hence complexity increases.



Difference between ULT and KLT



Multi-Threading Models

• Some operating system provides a combined
user level thread and kernel level thread
facility.

• Solaris is a good example of this combined
approach.

• Multi-Threading models are three types.
– Many-to-One Model

– One-to-One Model

– Many-to-Many Model



Many-to-One Model

• Implementation of the many-to-one
model (many user level thread to one
kernel level thread) allow the
application to create any number of
threads that can execute concurrently.

• In this implementation, all threads
activity is restricted to user space.

• Additionally only one thread can access
the kernel at a time, so only one
schedulable entity is known to the os.



One-to-One Model

• The one-to-one model (one
user level thread to one
kernel level thread) is among
the earliest implementations
of true multithreading.

• In this implementation, each
ULT created by the
application is known to the
kernel and all threads can
access the kernel at the
same time.



Many-to-Many Model

• The many-to-many model (many
user level thread to many kernel
level thread) avoids many of the

• limitations of the one-to-one
model, while extending
multithreading

• capabilities even further. The
many-to-many model also called
two-level model, minimize
programing effort while reducing
the cost and weight of each
thread.


