THREADS (OPERATING SYSTEM)

Presented By : Prof. Chetan Solanki
CKPCET.

What is Thread ?

A thread is a flow of execution through the
process code, with its own program counter,
system registers and stack.

* A thread is also called a light weight process.
Threads provide a way to improve application
performance through parallelism.

 Each thread belongs to exactly one process
and no thread can exist outside a process.

Single threaded Process and Multi-

threaded Process

code

data

files

registers

stack

thread — ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

?

:

E_

— thread

multithreaded process

Process is heavy weight or
resource intensive.

Process switching needs
interaction with operating system.

In multiple processing
environments each process
executes the same code but has its
own memory and file resources.

If one process is blocked then no
other process can execute until the
first process is unblocked.

Multiple processes without using
threads use more resources.

In multiple processes each process
operates independently of the
others.

Difference between Process and Threads :

Thread is light weight taking lesser
resources than a process.

Thread switching does not need to
interact with operating system.

All threads can share same set of
open files, child processes.

While one thread is blocked and
waiting, second thread in the same
task can run.

Multiple threaded processes use
fewer resources.

One thread can read, write or
change another thread’s data.

Advantages of Threads

Thread minimizes context switching time.

Use of threads provides concurrency within a
process.

Efficient communication.

Economy- It is more economical to create and
context switch threads.

Utilization of multiprocessor architectures to
a greater scale and efficiency.

Disadvantages of Threads

* Blocking of parent threads will stop all child
thread.

* Security.

Types of Threads

* Threads are implemented in following two
ways :
— User Level Threads (ULT)
— Kernel Level Threads (KLT)

User Level Threads (ULT)

 User level thread implement in user level
libraries, so thread switching does not need to
call operating system and to cause

* interrupt to the kernel.

* |n fact, the kernel knows nothing about user
level threads and manages them as if they
were single-threaded process.

User Level Threads (ULT)

 Advantages of ULT

— User level threads does not require modification to
operating system.

— Easy to represent and manage.
— User level thread can run on any operating system.
— User level threads are fast and efficient.

* Disadvantages of ULT :

— There is a lack of coordination between threads and
operating system kernel.

— ULT require non-blocking system «call (i.e.
Multithreaded kernel)

Kernel Level Threads (KLT)

* In this method, the kernel knows about and
manages the threads.

* No runtime system is needed in this case.

* Operating system kernel provides system call
to create and manage threads.

Kernel Level Threads (KLT)

e Advantages of KLT :

— Kernel can simultaneously schedule multiple threads from
the same process on multiple processes.

— If one thread in a process is blocked the kernel can
schedule another thread of the same process.

— Kernel routines themselves can multithreaded.

* Disadvantages of KLT :

— Kernel thread are generally slower to create and manage
than the user threads.

— Kernel requires Thread Control Block (TCB) for each thread
in the pool, hence complexity increases.

Difference between ULT and KLT

User level thread are faster to
create and manage.

Implementation is by a thread
ibrary at the user level.

ULT is generic and can run on any
operating system.

Multi-Threaded can not take
advantages of multiprocessing.

Kernel level thread are slower to
create and manage.

Operating system supports
creation of kernel level threads.

KLT is specific to the operating
system.

Kernel routines themselves can be
multithreaded.

Multi-Threading Models

* Some operating system provides a combined

user level thread and kernel level thread
facility.

* Solaris is a good example of this combined
approach.
 Multi-Threading models are three types.
— Many-to-One Model
— One-to-One Model
— Many-to-Many Model

Many-to-One Model

(
* Implementation of the many-to-one ((
model (many user level thread to one | ¢ (
kernel level thread) allow the |
application to create any number of *
threads that can execute concurrently.

In this implementation, all threads
activity is restricted to user space.

Additionally only one thread can access
the kernel at a time, so only one
schedulable entity is known to the os.

(«—userthread

' 4
{
\

| k | «—kemel thread
&

One-to-One Model

* The one-to-one model (one
user level thread to one
kernel level thread) is among
the earliest implementations
of true multithreading.

* |In this implementation, each
ULT created by the

application is known to the
kernel and all threads can @ ®<—kernelthread
access the kernel at the

same time.

< «— (ser thread

(

N N

Many-to-Many Model

e The many-to-many model (many
user level thread to many kernel
level thread) avoids many of the \

* limitations of the one-to-one)
model, while extending
multithreading

e capabilities even further. The
many-to-many model also called
two-level model, minimize
programing effort while reducing
the cost and weight of each
thread.

< «— |ser thread

\

k) (k)
W & &

| | «— kemel thread

