
CHAPTER 1

INTRODUCTION TO

OPERATING SYSTEMS

by

Prof. Chetan K. Solanki

1.1 General Definition

 An OS is a program which acts as an interface between
computer system, users and the computer hardware.

 It provides a user-friendly environment in which a user
may easily develop and execute programs.

 Otherwise, hardware knowledge would be mandatory for
computer programming.

 So, it can be said that an OS hides the complexity of
hardware from uninterested users.

1.1 General Definition

 In general, a computer system has some
resources which may be utilized to solve a
problem. They are

Memory

 Processor(s)

 I/O

 File System

 etc.

1.1 General Definition

Mainboard

1.1 General Definition

1.1 General Definition

mainboard

1.1 General Definition

processor

1.1 General Definition

RAM

What is OS?

 An interface between Hardware and User Programs

 An abstraction of the hardware for all the (user)
processes

 Hide the complexity of the underlying hardware and give
the user a better view of the computer

 => A MUST!

Computer System Components

1. Hardware – provides basic computing resources (CPU, memory, I/O devices).

2. Operating system – controls and coordinates the use of the hardware among

the various application programs for the various users.

3. Applications programs – define the ways in which the system resources are

used to solve the computing problems of the users (compilers, database

systems, video games, business programs).

4. Users (people, machines, other computers).

Abstract View of System Components

The OS

. . .
CPU

memory

device device device

Operating system

utilities
applications

software

systems
software

hardware
components

. . .
CPU

memory

device device device

Operating system

utilities
applications

software

systems
software

hardware
components

1.1 General Definition

 The OS manages these resources and allocates
them to specific programs and users.

 With the management of the OS, a programmer
is rid of difficult hardware considerations.

 An OS provides services for
 Processor Management

 Memory Management

 File Management

 Device Management

 Concurrency Control

1.1 General Definition

 Another aspect for the usage
of OS is that; it is used as a
predefined library for
hardware-software
interaction.

 This is why, system programs
apply to the installed OS
since they cannot reach
hardware directly.

Application Programs

System Programs

Operating System

Machine Language

HARDWARE

1.1 General Definition

 Since we have an already written library,
namely the OS, to add two numbers we simply
write the following line to our program:

c = a + b ;

1.1 General Definition

 in a system where there is no OS installed, we should
consider some hardware work as:
(Assuming an MC 6800 computer hardware)

LDAA $80 Loading the number at memory location 80

LDAB $81 Loading the number at memory location 81

ADDB Adding these two numbers

STAA $55 Storing the sum to memory location 55

 locations and used our hardware knowledge of the
system.ware knowledge of the system.

1.1 General Definition

 In an OS installed machine, since we have an
intermediate layer, our programs obtain some
advantage of mobility by not dealing with
hardware.

 For example, the above program segment
would not work for an 8086 machine, where as
the

“c = a + b ;”

syntax will be suitable for both.

1.1 General Definition

A simple program

segment with no

hardware

consideration

A more

sophisticated

program segment

with hardware

consideration

Hardware

response
OS Machine

Language

1.1 General Definition

 With the advantage of easier programming
provided by the OS, the hardware, its machine
language and the OS constitutes a new
combination called as a virtual (extended)
machine.

Machine

Language

Hardware

Machine

Language

Hardware

Operating

System

Machine

Virtual

(Extended)

Machine

1.1 General Definition

 In a more simplistic approach, in fact, OS itself is a
program.

 But it has a priority which application programs
don’t have.

 OS uses the kernel mode of the microprocessor,
whereas other programs use the user mode.

 The difference between two is that; all hardware
instructions are valid in kernel mode, where some
of them cannot be used in the user mode.

1.2 History of Operating Systems

 It all started with computer hardware in about

1940s.

ENIAC 1943

1.2 History of Operating Systems

 ENIAC (Electronic Numerical Integrator and
Computer), at the U.S. Army's Aberdeen Proving
Ground in Maryland.

 built in the 1940s,

weighed 30 tons,

was eight feet high, three feet deep, and 100 feet
long

 contained over 18,000 vacuum tubes that were
cooled by 80 air blowers.

1.2 History of Operating Systems

 Computers were using vacuum tube technology.

ENIAC’s vacuum tubes

1.2 History of Operating Systems

ENIAC’s backside

1.2 History of Operating Systems

Programs were loaded into memory manually using switches, punched

cards, or paper tapes.

ENIAC : coding by cable connections

1.2 History of Operating Systems

punch card

1.2 History of Operating Systems

1.2 History of Operating Systems

Paper tape

1.2 History of Operating Systems

1.2 History of Operating Systems

Babbage’s analytical engine

(designed in 1840’s by Charles Babbage, but cold not be constructed by him.

An earlier and simpler version is constructed in 2002, in London)

http://www.computerhistory.org/babbage/

http://www.computerhistory.org/babbage/

1.2 History of Operating Systems

 Ada Lovalence (at time of Charles Babbage) wrote

code for analytical engine to compute Bernulli

Numbers

1.2 History of Operating Systems

 As time went on, card readers, printers, and

magnetic tape units were developed as additional

hardware elements.

 Assemblers, loaders and simple utility libraries were

developed as software tools.

 Later, off-line spooling and channel program

methods were developed sequentially.

1.2 History of Operating Systems

Commodore PET,

1977

History of the OS

 Two distinct phases of history

 Phase 1: Computers were expensive

 Goal: Use computer’s time efficiently

Maximize throughput (I.e., jobs per second)

Maximize utilization (I.e., percentage busy)

 Phase 2: Computers are inexpensive

 Goal: Use people’s time efficiently

Minimize response time

First commercial systems

 1950s Hardware
 Large in size, expensive, and slow

 Input/Output: Punch cards and line printers

 Goal of OS
 Get the hardware working

 Single operator/programmer/user runs and debugs interactively

 OS Functionality
 Standard library only (no sharing or coordination of resources)

 Monitor that is always resident; transfer control to programs

 Advantages
 Worked and allowed interactive debugging

 Problems
 Inefficient use of hardware (throughput and utilization)

Inexpensive Peripherals

 1960s Hardware
 Expensive mainframes, but inexpensive keyboards and monitors

 Enables text editors and interactive debuggers

 Goal of OS
 Improve user’s response time

 OS Functionality
 Time-sharing: switch between jobs to give appearance of dedicated

machine

 More complex job scheduling

 Concurrency control and synchronization

 Advantage
 Users easily submit jobs and get immediate feedback

Inexpensive Personal Computers

 1980s Hardware

 Entire machine is inexpensive

 One dedicated machine per user

 Goal of OS

 Give user control over machine

 OS Functionality

 Remove time-sharing of jobs, protection, and virtual memory

 Advantages

 Simplicity

 Works with little main memory

 Machine is all your own (performance is predictable)

 Disadvantages

 No time-sharing or protection between jobs

Inexpensive, Powerful Computers

 1990s+ Hardware

 PCs with increasing computation and storage

 Users connected to the web

 Goal of OS

 Allow single user to run several applications simultaneously

 Provide security from malicious attacks

 Efficiently support web servers

 OS Functionality

 Add back time-sharing, protection, and virtual memory

Current Systems

 Conclusion: OS changes due to both hardware and users

 Current trends
 Multiprocessors

 Networked systems

 Virtual machines

 OS code base is large
 Millions of lines of code

 1000 person-years of work

 Code is complex and poorly understood
 System outlives any of its builders

 System will always contain bugs

 Behavior is hard to predict, tuning is done by guessing

Batch Processing

 Goal of OS: Better throughput and utilization

 Batch: Group of jobs submitted together
 Operator collects jobs; orders efficiently; runs one at a time

 Advantages
 Reducing setup costs over many jobs

 Operator more skilled at loading tapes

 Keep machine busy while programmer thinks

 Improves throughput and utilization

 Problems
 User must wait until batch is done for results

 Machine idle when job is reading from cards and writing to printers

Spooling

 Hardware
 Mechanical I/O devices much slower than CPU

 Read 17 cards/sec vs. execute 1000 instructions/sec

 Goal of OS
 Improve performance by overlapping I/O with CPU execution

 Spooling: Simultaneous Peripheral Operations On-Line
1. Read card punches to disk

2. Compute (while reading and writing to disk)

3. Write output from disk to printer

 OS Functionality
 Buffering and interrupt handling

 Problem
 Machine idle when job waits for I/O to/from disk

Multiprogramming Operating Systems:

 Finally, the idea of multiprogramming came.

 Multiprogramming means sharing of resources
between more than one processes.

 By multiprogramming the CPU time is not
wasted, because, while one process moves on
some I/O work, the OS picks another process to
execute till the current one passes to I/O
operation.

Multiprogrammed Batch Systems

 Observation: Spooling provides pool of ready jobs

 Goal of OS

 Improve performance by always running a job

 Keep multiple jobs resident in memory

 When job waits for disk I/O, OS switches to another job

 OS Functionality

 Job scheduling policies

 Memory management and protection

 Advantage: Improves throughput and utilization

 Disadvantage: Machine not interactive

Multi-tasking and Single-tasking Operating Systems

 When a single program is allowed to run at a
time, the system is grouped under the single-
tasking system category.

 while in case the operating system allows for
execution of multiple tasks at a time, it is
classified as a multi-tasking operating system.

 In multitasking, the operating system slices the
CPU time and dedicates one slot to each of the
programs.

Multi-user and Single-user Operating Systems

 Computer operating systems of this type allow multiple users to access a
computer system simultaneously.

 Time-sharing systems can be classified as multi-user systems as they enable
a multiple user access to a computer through time sharing.

 Single-user operating systems, as opposed to a multi-user operating system,
are usable by only one user at a time.

 Being able to have multiple accounts on a Windows operating system does
not make it a multi-user system. Rather, only the network administrator is
the real user.

 But for a Unix-like operating system, it is possible for two users to login at a
time and this capability of the OS makes it a multi-user operating system.

1.2 History of Operating Systems

Terminals are connected

to the main computer and

used for input and output.

No processing is made.

They do not have CPUs.

Main computer; having a CPU

executing processes by

utilization of the OS, (e.g. UNIX).

Network Operating Systems

 Use of the networks required OSs appropriate for them.

 In network systems, each process runs in its own
machine but the OS have access to other machines.

 By this way, file sharing, messaging, etc. became
possible.

 In networks, users are aware of the fact that s/he is
working in a network and when information is
exchanged. The user explicitly handles the transfer of
information.

Distributed Operating Systems

Each is a computer having its own

CPU, RAM, etc. An OS supporting

networks is installed on them.

Distributed Operating Systems

 Distributed systems are similar to networks. However
in such systems, there is no need to exchange
information explicitly, it is handled by the OS itself
whenever necessary.

 With continuing innovations, new architectures and
compatible OSs are developed. But their details are not
in the scope of this text since the objective here is to
give only a general view about developments in OS
concept.

Distributed Operating Systems

 Distribute the computation among several physical processors.

 Loosely coupled system – each processor has its own local
memory; processors communicate with one another through
various communications lines, such as high-speed buses or
telephone lines.

 Advantages of distributed systems.

 Resources Sharing

 Computation speed up – load sharing

 Reliability

 Communications

Distributed Operating Systems

 Requires networking infrastructure.

 Local area networks (LAN) or Wide area
networks (WAN)

 May be either client-server or peer-to-
peer systems.

General Structure of Client-Server

Clustered Systems

 Clustering allows two or more systems to share

storage.

 Provides high reliability.

 Asymmetric clustering: one server runs the

application while other servers standby.

 Symmetric clustering: all N hosts are running the

application.

Real-Time Systems

 Often used as a control device in a dedicated

application such as controlling scientific experiments,

medical imaging systems, industrial control systems,

and some display systems.

 Well-defined fixed-time constraints.

 Real-Time systems may be either hard or soft real-

time.

Real-Time Systems (Cont.)

 Hard real-time:

 Secondary storage limited or absent, data stored in short term memory, or

read-only memory (ROM)

 Conflicts with time-sharing systems, not supported by general-purpose

operating systems.

 Soft real-time

 Limited utility in industrial control of robotics

 Useful in applications (multimedia, virtual reality) requiring advanced

operating-system features.

Handheld Systems

 Personal Digital Assistants (PDAs)

 Cellular telephones

 Issues:

 Limited memory

 Slow processors

 Small display screens.

OS Services

These services include

User interface

Program execution

I/O operation

File system management

Communications

Error detections and handlings

Resources allocations

Accounting

Protection

Command interpretation

Resource management

The operating system provides certain services to the program

and user

OS Services (Cont…)

OS System Calls

 What are System Calls?

 System Calls provide the Interface between a process and

the Operating System.

 These calls are generally available as Assembly language

instruction.

 System Calls can also be made directly through HLL

programs for certain systems.

 UNIX System calls can be invoked directly from a C or C++

program.

OS System Calls (Cont…)

 Categories of System Calls

 System calls can be grouped into five major categories
as follows.

 Process control

 File management.

 Device management

 Information Maintenance and Communication

OS System Calls (Cont…)

 Process control

 End, abort

 Load, execute

 Create process, terminate process Get process, terminate
process

 Wait for time

 Allocate and free memory

 File management

 Create file, delete file

 Open , close

 Read, write, reposition.

 Get file attributes, set file attributes

OS System Calls (Cont…)

 Device management

 Request Device, release device

 Read, write, reposition.

 Get device attributes and set device attributes Logically
attach or detach devices

 Information Maintenance and Communication

 Get time or date, Set time of date

 Logically attach or detach devices

 Information maintenance

 Get system data, Set Systems data

 Get process, file of device attributes Set process, file or
device attribute

OS Structure: Simple Structure

• Operating systems such as MS-DOS

and the original UNIX did not have well-

defined structures.

•There is no CPU Execution Mode (user

and kernel), and so errors in applications

can cause the whole system to crash.

• written to provide the most functionality

in the least space

• Not divided into modules

• Although MS-DOS has some

structure, its interfaces and levels of

functionality are not well separated

OS Structure: Layered Approach

• The operating system is divided into a

number of layers (levels), each built on top

of lower layers.

• The bottom layer (layer 0), is the

hardware; the highest (layer N) is the user

interface / Application Package.

• Modularity is the advantage of this layered

system.

• With modularity, layers are selected such

that each uses functions

•(operations) and services of only lower-

level layers

Layered Approach

 Advantages of layered apporach:

 modularization makes debugging much easier.

 Design and implementation makes simple.

 it provides transparency between the layers.

 Disadvantages of layered apporach:

 Less efficient as system call takes longer time.

 Interaction between the layers and parameters passing is difficult.

Kernel

 is a software code that resides in the central core of a OS.

 it has complete control over system

 it is different than the shell.

 the shell is the outermost part of an OS and a program that interacts

with user commands.

User Applications

Kernel

Computer Hardware

CPU Memory I/O Devices

Kernel

 it does not interact directly with the user, but it interacts with the shell, other

programs and hardware.

 when OS boots, kernel is the first part of the OS to load into memory and

remains in the memory for the entire duration of the computer session.

 kernel code is usally loaded into a protected area of memory.

 kernel performs its tasks like execution processes and handling interrupts in

kernel space.

 memory is divided into system area and user area

 kernel content will change according to the OS but it includes following:

 scheduler

 supervisor

 Interrupt handler

 memory manager

Types of Kernel

 Monolithic kernel

 Microkernel

Continue...

• Functionality of the OS is invoked

with simple function calls within the

kernel, which is one large program.

• Device drivers are loaded into the

running kernel and become part of

the kernel.

• Linux and Unix are the example of

OS having this type of kernel

continue...

 Advantages:

 simple to design and implement

 simplicity provides speed on simple h/w

 it can be expanded using moduler system.

 time tested and design well known.

 Disadvantages:

 runtime loading and unloading is not possible because of moduler

system.

 if code size increases, maintainance is difficult.

 fault tolerance is low.

Microkernel

 This structures the operating system by removing all nonessential portions of the

kernel and implementing them as system and user level programs.

 Generally they provide minimal process and memory management, and a

communications facility.

 Communication between components of the OS is provided by message passing.

 The benefits of the microkernel are as follows:

 Extending the operating system becomes much easier.

 Any changes to the kernel tend to be fewer, since the kernel is smaller.

 The microkernel also provides more security and reliability.

 Main disadvantage is poor performance due to increased system overhead from

message passing.

continue...

Comparision of Monolithic and micro kernel

Sr. No. Monolithic kernel Microkernel

1 kernel size is large. kernel size is small.

2 OS is complex to design
OS is easy to design, implement and
install.

3. request may be serviced faster.
request may be serviced slower
than monolithic.

4.
all the OS services are included in
the kernel.

kernel provides only IPC, and low
level device mgmt.

5.
no message passing and no
context switching are required
while kernel is perfroming job.

it requires message passing and
context switching.

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion.

 It treats hardware and the operating system kernel as all hardware.

 A virtual machine provides an interface identical to the underlying bare hardware.

 The operating system host creates the illusion that a process has its own processor and

virtual memory.

 Each guest provided with a (virtual) copy of underlying computer.

Virtual Machines History and Benefits

 First appeared commercially in IBM mainframes in 1972

 Fundamentally, multiple execution environments (different operating

systems) can share the same hardware

 Protect from each other

 Some sharing of file can be permitted,

 controlled Communication with each other, other physical systems via networking

 Useful for development, testing

 Consolidation of many low-resource use systems onto fewer busier

systems

 “Open Virtual Machine Format”, standard format of virtual machines,

allows a VM to run within many different virtual machine (host)

platforms

Virtual Machines History and Benefits

Migration of Operating-System Concepts and Features

