
Process Synchronization
IPC (Inter-process Communication)

Prepared By,

Prof. Chetan K. Solanki

Asst. Prof., COED, CKPCET.

Outline
• The principles of concurrency

• Interactions among processes

– Race Condition

– Critical Section

• Mutual exclusion problem

• Mutual exclusion- solutions

– Software approaches (Peterson’s)

– Hardware support (test and set atomic operation)

– OS solution (semaphores)

– PL solution (monitors)

– Distributed OS solution (message passing)

• Reader/writer problem

• Dining Philosophers Problem

2/13/2018 Page 3

Principles of Concurrency

• Interleaving and overlapping the execution of
processes.

• Consider two processes P1 and P2 executing the
function echo:

{

input (in, keyboard);

out = in;

output (out, display);

}

2/13/2018 Page 4

Concurrency (cont...)

• P1 invokes echo, after it inputs into in , gets interrupted (switched).

• P2 invokes echo, inputs into in and completes the execution and exits.

When P1 returns in is overwritten and gone.

• Result: first character is lost and second character is written twice.

• This type of situation is even more probable in multiprocessing

systems where real concurrency is realizable thru’ multiple processes

executing on multiple processors.

• Solution: Controlled access to shared resource

– Protect the shared resource : in buffer; “critical resource”

– one process/shared code. “critical region”

Interprocess Communication

• Processes frequently need to communicate with other processes

• Use shared memory

• Need a well structured way to facilitate interprocess communication

– Maintain integrity of the system

– Ensure predicable behavior

• Many mechanisms exist to coordinate interprocess communication.

Purposes for IPC

• Data Transfer

• Sharing Data

• Event notification

• Resource Sharing and Synchronization

• Process Control

2/8/2018 Page 7

Interactions among processes

In a multi-process application these are the various degrees
of interaction:

1. Competing processes: Processes themselves do not
share anything. But OS has to share the system
resources among these processes “competing” for
system resources such as disk, file or printer.

Co-operating processes : Results of one or more
processes may be needed for another process.

2. Co-operation by sharing : Example: Sharing of an IO
buffer. Concept of critical section. (indirect)

3. Co-operation by communication : Example: typically
no data sharing, but co-ordination thru’
synchronization becomes essential in certain
applications. (direct)

Interactions ...(contd.)

• Among the three kinds of interactions indicated

by 1, 2 and 3 above:

– 1 is at the system level: potential problems : deadlock

and starvation.

– 2 is at the process level : significant problem is in

realizing mutual exclusion.

– 3 is more a synchronization problem.

Interprocess Communication(Cont…)
• Processes within a system may be independent or cooperating

• Cooperating process can affect or be affected by other processes, including
sharing data

• Reasons for cooperating processes:

– Information sharing

– Computation speedup

– Modularity

– Convenience

• Dangers of process cooperation

– Data corruption, deadlocks, increased complexity

– Requires processes to synchronize their processing

• Cooperating processes need interprocess communication (IPC)

• Two models of IPC

– Shared memory

– Message passing

Interprocess Communication(Cont…)

Producer-Consumer Problem

int itemCount = 0;
procedure producer()
{

while (true)
{

item = produceItem();
if (itemCount == BUFFER_SIZE)
{ sleep(); }
putItemIntoBuffer(item);
itemCount = itemCount + 1;
if (itemCount == 1)
{ wakeup(consumer); }

}
}

procedure consumer()

{

while (true)

{

if (itemCount == 0)

{ sleep(); }

item = removeItemFromBuffer();

itemCount = itemCount - 1;

if (itemCount == BUFFER_SIZE - 1)

{ wakeup(producer); }

consumeItem(item);

}

}

• The problem with this solution is that it contains a race
condition that can lead to a deadlock.

• Consider the following scenario:
– The consumer has just read the variable itemCount, noticed

it's zero and is just about to move inside the if block.
– Just before calling sleep, the consumer is interrupted and the

producer is resumed.
– The producer creates an item, puts it into the buffer, and

increases itemCount.
– Because the buffer was empty prior to the last addition, the

producer tries to wake up the consumer.
– Unfortunately the consumer wasn't yet sleeping, and the

wakeup call is lost. When the consumer resumes, it goes to
sleep and will never be awakened again. This is because the
consumer is only awakened by the producer
when itemCount is equal to 1.

– The producer will loop until the buffer is full, after which it
will also go to sleep.

– Since both processes will sleep forever, we have run into a
deadlock. This solution therefore is unsatisfactory.

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Deadlock

Race Conditions
• In most modern OS, processes that are working together often share

some common storage
– Shared memory
– Shared file system

• A race condition occurs when multiple processes or threads read
and write data items so that the final result depends on the order
of execution of instructions in the multiple processes.

• A Race Condition is when the result of an operation depends on the
ordering of when individual processes are run

– Process scheduling is controlled by the OS and is non-deterministic

• Race conditions result in irregular errors that are very difficult to
debug

– Very difficult to test programs for race conditions

• Must recognize where race conditions can occur
– Programs can run for months or years before a race condition is

discovered

• For example, two processes P1 and P2 share the
global variable X.

• Process P1 updates variable X to the value 2 and
at some point in its execution P2 updates X to
the value 3.

• These two tasks are in race to write variable X.
• In this, the process updates last determines the

final value of X.
• If two processes P3 and P4 shares two global

variables X=2 and Y=3.
– While in execution, process P3 executes the

assignment X= X+Y and process P4 executes Y=X+Y.
– Both the process updates different variables.
– The final values of two variables depend on the

order in which the two processes executes these two
assignment.

• Process Interaction:
– Processes unaware of each other. This situation

occurs in multiprogramming of multiple
independent processes.

– Processes indirectly aware of each other.
– Processes directly aware of each other.

• Requirement for Mutual exclusion (ME):
– ME should meet following requirement.

• ME must be enforced only on process at a time is allowed
into its critical section.

• A process that halts in its noncritical section must do so
without interfering with other processes.

• It must not be possible for a process requiring access to a
critical section to be delayed indefinitely, no deadlock no
starvation.

• When no process is in its critical section, any process that
ready must be permitted to enter without delay.

• A process remain in its critical section for finite time only.

Critical section(CS) problem…
• Each process has a segment of code called critical section.
• is that part of the process code that affects the shared resource.
• Critical section is used to avoid race conditions on data items.
• In critical section, process maybe changing common variables,

updating a table, writing a file and so on.
• At any time only one process can executes in its critical section.
• When one process is executing in its CS, no other process is to be

allowed to execute in its critical section.
• The execution of critical sections by the process is mutually exclusive

in time.
• Basic structure of Process :
• do

{

Critical Section.

Remaining section.
}

• Each process contains three section: entry section, exit section and
remaining section.

Enter CS

Exit CS

Critical section(CS) problem…
• A solution to the CS problem must satisfy the

following three requirements:
– Mutual Exclusion

• Suppose Pi process executing in its CS then no other
processes are allowed to execute the same.

– Progress
• If no process is in CS and some process wish to enter their

CS, then only those processes that are not executing in
their remaining section can participate in the decision on
which will enter its CS next.

• This section can not be postponed indefinitely.

– Bounded waiting
• When process requests access to its CS, the decision that

grants it access may not be delayed indefinitely.

• A process may not be denied access because of starvation
or deadlock.

Solution to the CS

• Two process solution

– Peterson’s Solution

– Consider two processes
P0 and P1

– Algorithm - 1:

• P0 and P1 share the
common integer
variable i.e. turn and
initialized to 0 or 1.

• If turn == 1,
– Then P0 is allowed to

execute in its CS.

Process P0 structure:

do

{

while(turn!=i)

critical section;

turn = i;

remaining section;

} while(1);

• For example if turn == 0 and P1is
ready to enter into its CS, P1 can
not do so, even though P0 may be
in its remaining section.

2/8/2018 Page 19

Software Solutions: Algorithm 1

• Process 0
...

while turn != 0 do

nothing;

// busy waiting

< Critical Section>

turn = 1;

...

• Process 1
...

while turn != 1 do

nothing;

// busy waiting

< Critical Section>

turn = 0;

...

Problems : Strict alternation, Busy Waiting

Solution to the CS

• Algorithm-1 can not give sufficient information
about the state of each process.

• It keeps only records of the process which is in
its CS

• To solve this problem variable turn is replaced
with flag and it is initialized with

– Boolean flag[2]; and its values are false;

– If flag[i] is true

• Then Pi is ready to enter the CS.

Process Pi structure:

do

{ flag[i]=true;

while(flag[j]);

critical section;

flag[i] = false;

remaining section;

} while(1);

Process Pj structure:

do

{ flag[j]=true;

while(flag[i]);

critical section;

flag[j] = false;

remaining section;

} while(1);

PROBLEM : Potential for deadlock, if one of the processes fail within CS.

• In this algo. Process Pi sets flag[i] to be true, then process Pi is ready to
enter its CS.

• Process Pi also checks for process Pj.

• If process Pj were ready, then Pi would wait until flag[j]=false.

• So process Pi enter into its CS.

Solution to the CS
• Algorithm – 3 gives the

correct solution to the
critical section problem.

• It satisfies all three
requirements of the
critical section.

• The processes shares
two variables:
– Boolean flag[2];

– int turn;

– Initialize
flag[0]=flag[1]=false;

Process Pi structure:

do

{ flag[i]=true;

turn=j;

while(flag[j] && turn==j);

critical section;

flag[i] = false;

remaining section;

} while(1);

• For process, to enter the CS first
set flag[i] = true and then sets
turn = j;

• If both processes try to enter at
the same time, turn will set to
both i and j at the same time.

Multiple Process Solutions…
• Bakery algorithm is used in multiple process

solution.

• It solves the problem of CS for n processes.

• Each process requesting entry to critical
section is given a numbered token such that the
number on the token is larger than the
maximum number issued earlier.

• This algorithm permits processes to enter the
critical section in the order of their token
numbers.

• If process Pi and Pj receive the same number
and if i < j then Pi is served first.

2/15/2018 Page 24

Synchronization Hardware

• Test and modify the content of a word atomically.

boolean TestAndSet(boolean &target) {

boolean rv = target;

target = true;

return rv;

}

2/15/2018 Page 25

Mutual Exclusion with Test-and-Set

• Shared data:

boolean lock = false;

• Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section
}

Synchronization Hardware

• Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}

Mutual Exclusion with Swap

• Shared data (initialized to false):
boolean lock;

• Process Pi

do {

key = true;

while (key == true)

Swap(lock, key);

critical section

lock = false;

remainder section

}

Semaphores

• Think about a semaphore as a class
• Attributes: semaphore value,
• Functions:

– init,
– wait,
– signal

• Support provided by OS
• Considered an OS resource, a limited number

available: a limited number of instances (objects) of
semaphore class is allowed.

• Can easily implement mutual exclusion among any
number of processes.

Semaphores…
• Is used to solve the critical section problem.
• It is an integer value.
• Semaphore is a variable that has an integer value

upon which the following three operations are
defined.
– Semaphore may be initialized to non negative value.
– The wait operation

• decrements the semaphore value.
• If the value becomes negative, then the process executing

the wait is blocked.

– The signal operation
• Increments the value of semaphore
• If value is not positive then a process blocked by a wait

operation is unblocked.

• Pseudo code:

– Wait(s)

{ while(s<=0)

s=s-1;

}

– Signal(s)

{

s=s+1;

}

• Semaphores are executed atomatically.

Critical Section of n Processes

• Shared data:
Semaphore mutex; //initially mutex = 1

• Process Pi:

do {

mutex.wait();

critical section

mutex.signal();

remainder section

} while (1);

2/15/2018 Page 32

Semaphore Implementation

• Define a semaphore as a class:
class Semaphore
{
int value; // semaphore value
ProcessQueue L; // process queue

//operations
wait()
signal()

}
• In addition, two simple utility operations:

– block() suspends the process that invokes it.
– Wakeup() resumes the execution of a blocked process P.

2/15/2018 Page 33

Semantics of wait and signal

• Semaphore operations now defined as
S.wait():

S.value--;
if (S.value < 0) {

add this process to S.L;
block(); // block a process

}

S.signal():
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(); // wake a process

}

2/15/2018 Page 34

Semaphores for CS
• Semaphore is initialized to 1.

• The first process that executes a wait() will be able to
immediately enter the critical section (CS).
– S.wait() makes S value zero.

• Now other processes wanting to enter the CS will each
execute the wait() thus decrementing the value of S, and will
get blocked on S.
– If at any time value of S is negative, its absolute value gives the

number of processes waiting blocked.

• When a process in CS departs, it executes S.signal() which
increments the value of S, and will wake up any one of the
processes blocked.

• The queue could be FIFO or priority queue.

2/15/2018 Page 35

Two Types of Semaphores

• Counting semaphore – integer value can
range over an unrestricted domain.

• Binary semaphore – integer value can
range only between 0 and 1; can be
simpler to implement. ex: nachos

• Can implement a counting semaphore
using a binary semaphore.

2/15/2018 Page 36

Classical Problems of Synchronization

• Bounded-Buffer Problem
(Producer/Consumer Problem)

• Readers and Writers Problem

• Dining-Philosophers Problem

2/15/2018 Page 37

Producer/Consumer problem

• Producer

repeat

produce item v;

b[in] = v;

in = in + 1;

forever;

• Consumer

repeat

while (in <= out) nop;

w = b[out];

out = out + 1;

consume w;

forever;

2/15/2018 Page 38

Solution for P/C using Semaphores
• Producer
repeat
produce item v;
MUTEX.wait();
b[in] = v;
in = in + 1;
MUTEX.signal();
forever;

• What if Producer is slow or
late?

• Consumer
repeat
while (in <= out) nop;
MUTEX.wait();
w = b[out];
out = out + 1;
MUTEX.signal();
consume w;
forever;

• Ans: Consumer will busy-
wait at the while statement.

2/15/2018 Page 39

P/C: improved solution

• Producer

repeat

produce item v;

MUTEX.wait();

b[in] = v;

in = in + 1;

MUTEX.signal();

AVAIL.signal();

forever;

• What will be the initial values
of MUTEX and AVAIL?

• Consumer

repeat

AVAIL.wait();

MUTEX.wait();

w = b[out];

out = out + 1;

MUTEX.signal();

consume w;

forever;

• ANS: Initially MUTEX = 1,
AVAIL = 0.

2/15/2018 Page 40

P/C problem: Bounded buffer

• Producer

repeat

produce item v;

while((in+1)%n == out) NOP;

b[in] = v;

in = (in + 1)% n;

forever;

• How to enforce bufsize?

• Consumer

repeat

while (in == out) NOP;

w = b[out];

out = (out + 1)%n;

consume w;

forever;

• ANS: Using another
counting semaphore.

2/15/2018 Page 41

P/C: Bounded Buffer solution

• Producer

repeat

produce item v;

BUFSIZE.wait();

MUTEX.wait();

b[in] = v;

in = (in + 1)%n;

MUTEX.signal();

AVAIL.signal();

forever;

• What is the initial value of
BUFSIZE?

• Consumer
repeat
AVAIL.wait();
MUTEX.wait();
w = b[out];
out = (out + 1)%n;
MUTEX.signal();
BUFSIZE.signal();
consume w;
forever;
• ANS: size of the bounded

buffer.

2/15/2018 Page 42

Semaphores - comments

• Intuitively easy to use.

• wait() and signal() are to be implemented as atomic
operations.

• Difficulties:

– signal() and wait() may be exchanged inadvertently by
the programmer. This may result in deadlock or
violation of mutual exclusion.

– signal() and wait() may be left out.

• Related wait() and signal() may be scattered all over the
code among the processes.

