
1

OPERATING SYSTEMS

DEADLOCKS

2

What Is In This Chapter?
• What is a deadlock?

• Staying Safe: Preventing and Avoiding
Deadlocks

• Living Dangerously: Let the deadlock
happen, then detect it and recover from it.

OPERATING SYSTEM
Deadlocks

3

DEADLOCKS
 EXAMPLES:

• "It takes money to make money".
• You can't get a job without experience; you can't get experience

without a job.

 BACKGROUND:
The cause of deadlocks:

Each process needing what other process has. This results from sharing
resources such as memory, devices, links.

Under normal operation, a resource allocations proceed like this::

1. Request a resource (suspend until available if necessary).
2. Use the resource.
3. Release the resource.

4

• Traffic only in one direction.
• Each section of a bridge can be viewed as a resource.
• If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback).
• Several cars may have to be backed up if a deadlock occurs.
• Starvation is possible.

DEADLOCKS Bridge Crossing
Example

7: Deadlocks 5

DEADLOCKS
NECESSARY CONDITIONS
ALL of these four must happen simultaneously for a deadlock to occur:

Mutual exclusion
- One or more than one resource must be held by a process in a non-
 sharable (exclusive) mode.
- If any other process requests this resource, then that process must
 wait for the resource to be released.

 Hold and Wait
 - A process holds a resource while waiting for another resource.
 - A process simultaneously holding at least one resource and waiting
 for at least one resource that is currently being held by some other
 process.
 No Preemption
 - There is only voluntary release of a resource - nobody else can make a
 process give up a resource.
 Circular Wait
 - Process A waits for Process B waits for Process C waits for Process A.

DEADLOCK
CHARACTERISATION

6

DEADLOCKS
A visual (mathematical) way to determine if a deadlock has, or may occur.

G = (V, E) The graph contains nodes and edges.

V Nodes consist of processes = { P1, P2, P3, ...} and resource types

{ R1, R2, ...}

E Edges are (Pi, Rj) or (Ri, Pj)

An arrow from the process to resource indicates the process is requesting the
resource. An arrow from resource to process shows an instance of the resource
has been allocated to the process.

Process is a circle, resource type is square; dots represent number of instances of
resource in type. Request points to square, assignment comes from dot.

RESOURCE
ALLOCATION GRAPH

Pi
Rj

Pi
Rj

Pi

7

• If the graph contains no cycles, then no process is deadlocked.
• If there is a cycle, then:

a) If resource types have multiple instances, then deadlock MAY
exist.

b) If each resource type has 1 instance, then deadlock has occurred.

DEADLOCKS RESOURCE
ALLOCATION GRAPH

Resource allocation graph

P2 Requests R3

R3 Assigned to P3

8

DEADLOCKS RESOURCE
ALLOCATION

GRAPH
Resource allocation graph

with a deadlock.

Resource allocation graph
with a cycle but no deadlock.

9

HOW TO HANDLE DEADLOCKS – GENERAL STRATEGIES

There are three methods:

1.Ignore Deadlocks:

2.Ensure deadlock never occurs using either

 Prevention Prevent any one of the 4 conditions from
happening.

 Avoidance Allow all deadlock conditions, but calculate cycles

about to happen and stop dangerous operations.

3. Allow deadlock to happen. This requires using both:

 Detection Know a deadlock has occurred.

 Recovery Regain the resources.

DEADLOCKS Strategy

Most Operating systems do this!!

10

 Do not allow one of the four conditions to occur.

Mutual exclusion:
a) Automatically holds for printers and other non-sharables.
b) Shared entities (read only files) don't need mutual exclusion (and

aren’t susceptible to deadlock.)
c) Prevention not possible, since some devices are intrinsically non

sharable.

Hold and wait:

a) Collect all resources before execution.
b) A particular resource can only be requested when no others are

holding. A sequence of resources is always collected beginning
with the same one.

c) Utilization is low, starvation possible.

DEADLOCKS Deadlock
Prevention

11

 Do not allow one of the four conditions to occur.

No preemption:

a) Release any resource already being held if the process
can't get an additional resource.

b) Allow preemption - if a needed resource is held by another
process, which is also waiting on some resource, steal it.
Otherwise wait.

Circular wait:

a) Number resources and only request in ascending order.
b) EACH of these prevention techniques may cause a

decrease in utilization and/or resources. For this reason,
prevention isn't necessarily the best technique.

c) Prevention is generally the easiest to implement.

DEADLOCKS Deadlock
Prevention

12

If we have prior knowledge of how resources will be requested, it's possible
to determine if we are entering an "unsafe" state.

Possible states are:

Deadlock No forward progress can be made.

Unsafe state A state that may allow deadlock.

Safe state A state is safe if a sequence of processes exist such that

there are enough resources for the first to finish, and as
each finishes and releases its resources there are enough
for the next to finish.

The rule is simple: If a request allocation would cause an unsafe state, do
not honor that request.

NOTE: All deadlocks are unsafe, but all unsafes are NOT deadlocks.

DEADLOCKS Deadlock
Avoidance

13

NOTE: All deadlocks are unsafe, but all unsafes are NOT
deadlocks.

SAFE
DEADLOCK

UNSAFE

Only with luck
will processes

avoid deadlock.

O.S. can avoid
deadlock.

DEADLOCKS Deadlock
Avoidance

14

A method used to determine if a particular state is safe. It's safe if
there exists a sequence of processes such that for all the processes,
there’s a way to avoid deadlock:

The algorithm uses these variables:

Need[I] – the remaining resource needs of each process.
Work - Temporary variable – how many of the resource are

currently available.
Finish[I] – flag for each process showing we ’ ve analyzed that

process or not.

need <= available + allocated[0] + .. + allocated[I-1] <- Sign of
success

Let work and finish be vectors of length m and n respectively.

DEADLOCKS
Safety Algorithm

Deadlock
Avoidance

15

1. Initialize work = available
Initialize finish[i]= false,

2. for i = 1,2,3,..n
 Find an i such that:

finish[i] == false and need[i] <= work

If no such i exists, go to step 4.

3. work = work + allocation[i]

finish[i]= true
goto step 2

4. if finish[i] == true for all i, then the system is in a safe state.

DEADLOCKS Deadlock
Avoidance

Safety Algorithm

16

DEADLOCKS Deadlock Avoidance
• Process P0, P1 and P2 compete for 12 tape drive, then consider the following case:

• Total allocated resources: 9
• Available resources are: 12 – 9 = 3
• At time T0 processes are in safe state, the sequence for which is < P1, P0, P2>
• Because it satisfies the safety conditions and the safe sequences can be

calculated as follows:
• P1 can immediately be allocated to all its resource requirement and then return to the

system
• Now available resources becomes: 3 + 2 = 5
• P0 can get all its resources and return them to the system. Need of the P0 is 5 and

system available resource is 5.
• Now available resources = 10
• Now P2 can be allocated required resources (i.e. requirement = 7 and available is =

10) Then after resources can be released and available resource = 10 + 2 =
12.(equals no. of tape drive)

Processes Max(Need) Current
Usage

Could ask
for

P0 10 5 5
P1 4 2 2
P2 9 2 7

7: Deadlocks 17

Do these examples:
Consider a system with: five processes, P0 P4, three resource types,
A, B, C.
Type A has 10 instances, B has 5 instances, C has 7 instances.
At time T0 the following snapshot of the system is taken.

Is the system
in a safe state?

DEADLOCKS Deadlock
AvoidanceSafety Algorithm

134200P4
110112P3
006203P2
020002P1

233347010P0
CBACBACBA
AvailReqAlloc

Max Needs = allocated + can-be-requested

7: Deadlocks 18

Do these examples:
Now try it again with only a slight change in the request by P1.
P1 requests one additional resource of type A, and two more of type C.
Request1 = (1,0,2).
Is Request1 < available?

 Alloc Req Avail

 A B C A B C A B C
P0 0 1 0 7 4 3 1

#
3 0

#
P1 3

#
0 2

#
0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Produce the
state chart as if

the request is
Granted and see

if it’s safe.
(We’ve drawn
the chart as if
it’s granted.

DEADLOCKS Deadlock
AvoidanceSafety Algorithm

Can the
request be
granted?

7: Deadlocks 19

Need an algorithm that
determines if deadlock
occurred.

Also need a means of

recovering from that
deadlock.

DEADLOCKS Deadlock Detection
SINGLE INSTANCE OF A RESOURCE

TYPE

• Wait-for graph == remove the

resources from the usual graph and
collapse edges.

• An edge from p(j) to p(i) implies that
p(j) is waiting for p(i) to release.

7: Deadlocks 20

SEVERAL INSTANCES OF A RESOURCE TYPE

Complexity is of order m * n * n.

We need to keep track of:

available - records how many resources of each type are available.
allocation - number of resources of type m allocated to process n.
request - number of resources of type m requested by process n.

Let work and finish be vectors of length m and n respectively.

DEADLOCKS Deadlock Detection

7: Deadlocks 21

1. Initialize work[] = available[]
 For i = 1,2,...n, if allocation[i] != 0 then
 finish[i] = false; otherwise, finish[i] = true;

2. Find an i such that:
 finish[i] == false and request[i] <= work

 If no such i exists, go to step 4.

3. work = work + allocation[i]
 finish[i] = true
 goto step 2

4. if finish[i] == false for some i, then the system is in deadlock state.
 IF finish[i] == false, then process p[i] is deadlocked.

DEADLOCKS Deadlock Detection

7: Deadlocks 22

EXAMPLE
We have three resources, A, B, and C. A has 7 instances, B has 2 instances, and C
has 6 instances. At this time, the allocation, etc. looks like this:

Is there a
sequence that
will allow
deadlock to be
avoided?

 Is there more
than one
sequence that
will work? 200200P

4

001112P
3

000303P
2

202002P
1

000000010P
0

CBACBACBA
Avai

l
ReqAllo

c

DEADLOCKS Deadlock Detection

7: Deadlocks 23

EXAMPLE
 Suppose the Request matrix is changed like this. In other words, the maximum
amounts to be allocated are initially declared so that this request matrix results.

USAGE OF THIS
DETECTION
ALGORITHM

Frequency of check
depends on how often a
deadlock occurs and
how many processes
will be affected.

Is there now a
sequence that will
allow deadlock to
be avoided?

200200P
4

001112P
3

1#00303P
2

202002P
1

000000010P
0

CBACBACBA
Avai

l
Re

q
Allo

c

DEADLOCKS Deadlock Detection

7: Deadlocks 24

So, the deadlock has occurred. Now, how do we get the resources back and gain
forward progress?

PROCESS TERMINATION:

· Could delete all the processes in the deadlock -- this is expensive.
· Delete one at a time until deadlock is broken (time consuming).
· Select who to terminate based on priority, time executed, time to

completion, needs for completion, or depth of rollback
· In general, it's easier to preempt the resource, than to terminate the

process.

RESOURCE PREEMPTION:

· Select a victim - which process and which resource to preempt.
· Rollback to previously defined "safe" state.
· Prevent one process from always being the one preempted (starvation).

DEADLOCKS Deadlock Recovery

7: Deadlocks 25

COMBINED APPROACH TO DEADLOCK HANDLING:

• Type of resource may dictate best deadlock handling. Look at ease of

implementation, and effect on performance.

• In other words, there is no one best technique.

• Cases include:

Preemption for memory,

Preallocation for swap space,

Avoidance for devices (can extract Needs from process.)

DEADLOCKS Deadlock Recovery

7: Deadlocks 26

In this section we have:

Looked at necessary conditions for a deadlock to occur.

Determined how to prevent, avoid, detect and recover from
deadlocks.

DEADLOCKS
WRAPUP

