Operatin
g

| SyStemg_',_ ;
Internals.

Design

__Principle

- S

Chapter 11
/O Management
and Disk Scheduling

Seventh Edition
By William Stallings

Operating Systems:
Internals and Design Principles

An artifact can be thought of as a meeting point—an
“Interface” in today’s terms between an ‘inner”
environment, the substance and organization of the
artifact itself, and an “outer” environment, the
surroundings in which it operates. If the inner
environment is appropriate to the outer
enwronment or vice versa, the artifact will serve its

— THE SCIENCES OF THE ARTIFICIAL,
Herbert Simon

Categories of I/O Devices

External devices that engage in I/O with computer
systems can be grouped into three categories:

—— Human readable

* suitable for communicating with the computer user
* printers, terminals, video display, keyboard, mouse

—— Machine readable

+ suitable for communicating with electronic equipment
« disk drives, USB keys, sensors, controllers

—— Communication

+ suitable for communicating with remote devices
* modems, digital line drivers

Differences in /0 Devices

m Devices differ in a number of areas:

Data Rate = \\.

+ there may be differences of magnitude between the data transfer rates

Application

+ the use to which a device is put has an influence on the software

Complexity of Control

+ the effect on the operating systemiis filtered by the complexity of the I/O module that controls the
device

Unit of Transfer
+ data may be transferred as a stream of bytes or characters or in larger blocks
Data Representation

+ different data encoding schemes are used by different devices

Error Conditions

+ the nature of errors, the way in which they are reported, their consequences,
and the availablerange of responses differs from one device to another

iy Data Rates

,{]i__*

Gigabit Ethernet

Graphics display

Hard disk

Ethernet

Optical disk

Scanner

Laser printer

Floppy disk

Modem

Mouse

Kevhboard

[
=
[T

I

[
=
1

101

(=]

104 104 10¢

=
=]
-1
(=]
(=]
=]
o
=
fr=}

Data Rate (bps)

Figure 11.1 Typical I/O Device Data Rates

Organization of the I/O
- Function

m Three techniques for performing I/O are:

Programmed 1/O

m the processor issues an I/O command on behalf of a process to an 1/O
module; that process then busy waits for the operation to be completed
before proceeding

Interrupt-driven 1/O
m the processor issues an I/O command on behalf of a process

m if non-blocking — processor continues to execute instructions from the
process that issued the I/O command

m if blocking — the next instruction the processor executes is from the OS,
which will put the current process in a blocked state and schedule another
process

Direct Memory Access (DMA)

m a DMA module controls the exchange of data between main memory and
an |/O module

Techniques for Performing /O

Table 11.1 I'O Techniques

No Interrupts

Use of Interrupts

I/O-to-memory transfer
through processor

Programmed 1/O

Interrupt-driven I/0

Direct I'O-to-memory
transfer

Direct memory access (DMA)

Evolution of the I/O
Function

* Processor directly controls a peripheral device

* A controller or I/O module is added

« Same configuration as step 2, but now interrupts are employed

* The I/O module is given direct control of memory via DMA

* The I/O module is enhanced to become a separate processor,
with a specialized instruction set tailored for 1/O

* The I/O module has a local memory of its own and is, in fact,
computer in its own right

€EC€EC€CE€L

|
Direct]l
Count
M e I I l O ry Data Lines « P Data
Register
Access b e
Address Lines » Register
Request to DMA 2
Acknowledge from DMA « Control
Interrupt « LU e
Read » 8
Write P

Figure 11.2 Typical DMA Block Diagram

1 T [T [

Processor DMA I/O0

I'0

Memory

(a) Single-bus, detached DMA

[N R R

Alternative

Processor

DMA

System bus

'O

DMA

DMA

Processor DMA

I e

o /O

(e) I/O bus

I/O bus

Memory

Lo

I'o

(b) Single-bus, Integrated DMA-I/O

Configuration

S

Memory

(0]

‘Design Objectives

Efficiency

Major effort in I/O design

Important because |/O
operations often form a
bottleneck

Most I/O devices are extremely
slow compared with main
memory and the processor

The area that has received the
most attention is disk 1/O

Generality

Desirable to handle all devices
in a uniform manner

Applies to the way processes
view 1/O devices and the way
the operating system manages
|/O devices and operations

Diversity of devices makes it
difficult to achieve true
generality

Use a hierarchical, modular
approach to the design of the
I/O function

Hierarchical Design __|

m Functions of the operating system should be separated according
to their complexity, their characteristic time scale, and their level of
abstraction

m Leads to an organization of the operating system into a series of
layers

m Each layer performs a related subset of the functions required of
the operating system

m Layers should be defined so that changes in one layer do not
require changes in other layers

User

A Model of
/O
Organizatio
n

1o

Communication
Architecture

o

Scheduling
& Control
Scheduling
& Control

Hardware|

Hardvware {b) Communications port

(a)} Local peripheral device

User
Processes

Directory
Management

File
Svstem

Physical
Organization

Scheduling
& Control

Hardware

(¢} File system

Buffering

m Perform input transfers in advance of requests being made and perform
output transfers some time after the request is made

Block-oriented device Stream-oriented device

 stores information in transfers data in and out
blocks that are usually as a stream of bytes
of fixed size * no block structure

» transfers are made one - terminals, printers,
block at a time communications ports,

» possible to reference and most other devices
data by its block number that are not secondary

- disks and USB keys are storage are examples
examples

m \Without a buffer, the OS
directly accesses the device

N O B Uffe r when it needs

Operating System User Process
' ™ 4 N

I/O Device n >
. J \ J

(a) No buffering

S i n g Ie B Uffe r m Operating system assigns

a buffer in main memory
for an 1/O request

Operating System User Process
4 N 4)
_ In Move
I/O Device » »
\. J \. J

(b) Single buffering

BIock-Onented Single
. Buffer

m |nput transfers are made to the system buffer

m Reading ahead/anticipated input
m is done in the expectation that the block will eventually be needed

m when the transfer is complete, the process moves the block into user
space and immediately requests another block

m Generally provides a speedup compared to the lack of system
buffering

m Disadvantages:
m complicates the logic in the operating system
m swapping logic is also affected

Stream Oriented Single
- . Buffer

m Line-at-a-time operation m Byte-at-a-time operation
m appropriate for scroll-mode m used on forms-mode
terminals (dumb terminals) terminals
m user input is one line at a m when each keystroke is
time with a carriage return significant
signaling the end of a line m other peripherals such as
m output to the terminal is sensors and controllers

similarly one line at a time

m Use two system buffers instead
of one

m A process can transfer data to

D O u b | e B u ffe r or from one buffer while the

operating system empties or
fills the other buffer

m Also known as buffer swapping

Operating System User Process
4 N 4 N
In S Move
I/O Device P
| —
\ / . /

(¢) Double buffering

Circular Buffer _

I/O Device

m [wo or more buffers are used

m Each individual buffer is one
unit in a circular buffer

Used when |/O operation must
keep up with process

Operating System User Process
4 Y
In Move
- g
[\ y

(d) Circular buffering

The Utility. of Buffering

m Technique that smoothes out peaks in I/O demand

m with enough demand eventually all buffers become full and their
advantage is lost

m \When there is a variety of I/O and process activities to service,
buffering can increase the efficiency of the OS and the
performance of individual processes

D IS IE m The actual details of disk I/O

operation depend on the:
P e rfO rm a n C m computer system

e m operating system
m nature of the 1/O

Parameters e

Wait for Wait for Seek Rotational Data
Device Channel Delay Transfer

ERRRERRR R T I

< Device Busy >

Figure 11.6 Timing of a Disk I/O Transfer

~ Positioning the
Read/Write Heads

When the disk drive is operating, the disk is rotating at constant
speed

To read or write the head must be positioned at the desired track
and at the beginning of the desired sector on that track

Track selection involves moving the head in a movable-head
system or electronically selecting one head on a fixed-head system

On a movable-head system the time it takes to position the head at
the track is known as seek time

The time it takes for the beginning of the sector to reach the head is
known as rotational delay

The sum of the seek time and the rotational delay equals the
access time

track number

First-In, First-Out (FIFO)

25
50
75
100
125
150
175
199

m Processes in sequential order
m Fair to all processes

m Approximates random scheduling in
performance if there are many processes
competing for the disk

(a) FIFO Time

Priority (PRI)

m Control of the scheduling is outside the control of disk
management software

m Goal is not to optimize disk utilization but to meet other objectives

m Short batch jobs and interactive jobs are given higher priority

m Provides good interactive response time / @ N\
\

m Longer jobs may have to wait an excessively long time| (- \%{

m A poor policy for database systems /g\ \ @/ \’/

N

-/-
Q=

Shortegt——

m Select the disk I/O request

SerViCe that requires the least
] _ movement of the disk arm
TI me F”'St from its current position

(S ST F) m Always choose the

minimum seek time

25
50
75
100
125
150
175

199 -
(b) SSTF Time

track number

track number

SCAN

25
50
75
100
125
150
175

m Also known as the elevator algorithm

m Arm moves in one direction only

m satisfies all outstanding requests until

it reaches the last track in that

direction then the direction is reversed

m Favors jobs whose requests are for
tracks nearest to both innermost and
outermost tracks

199

(c) SCAN

Time

m Restricts scanning to one

C_ S C AN direction only

m \When the last track has been

(CifCUlar SCAN) visited in one direction, the arm

is returned to the opposite end
of the disk and the scan begins
again

25
50
75
100
125
150
175
199

track number

(d) C-SCAN Time

N-Step-SCAN

m Segments the disk request queue into subqueues of length N

m Subqueues are processed one at a time, using SCAN

m \While a queue is being processed new requests must be added
to some other queue

m |f fewer than N requests are available at the end of a scan, all of
them are processed with the next scan

FSCAN

m Uses two subqueues

m \When a scan begins, all of the requests are in one of the
queues, with the other empty

m During scan, all new requests are put into the other queue

m Service of new requests is deferred until all of the old requests
have been processed

(a) FIFO (starting
at track 100)

(b) SSTF (starting
at track 100)

(c) SCAN (starting
at track 100, in the
direction of increasing
track number)

Number
Next track of tracks
accessed traversed
55 45
58 3
39 19
18 21
0 72
160 70
150 10
38 112
184 146
Average 393
seek
length

Number
Next track of tracks
aceessed traversed
90 10
58 5
55 e
39 16
38 1
18 20
150 132
160 10
184 24
Average 279
seek
length

Number
Next track of tracks
accessed traversed
150 : 50
160 10
184 24
90 94
38 32
a5t 3
3 16
38 1
18 20
Average 27.8
seek
length

(d) C-SCAN (starting
at track 100, in the
direction of increasing
track number)

Next Number -.
track of tracks
accessed traversed
150 50
160 10
184 24
18 166
38 20
39 1
55 16
58 3
90 32
Average 358
seek
length

Table 11.2 Comparison of Disk Scheduling Algorithms

=

FSCAN

at beginning of SCAN cycle

5%,
250 i % § i % Wity
) 1 ™ Gk £y
Name Description Remarks
Selection according to requestor
RSS Random scheduling For analysis and simulation
FIFO First-in-first-out Fairest of them all i
PRI Priority by process Control outside of disk queue management.
LIFO Last in first out Maﬁimize locality and resource utilization |
Selection according to requested item
SSTF Shortest-service-time first High utilization, small queues l
SCAN Back and forth over disk - Better service distribution 1
C-SCAN One way with fast return Lower service variability j
N—_stép~SCAN SCAN of N records at a time Service guarantee T
l-step-SCAN with N = queue size Load sensitive

Table 11.3 Disk Scheduling Algorithms

e I 2
. » i/
1
= ~ iy b
y # I ¥ . ¥ . E .
" " = -" 2 vy &
2 r i 3
g =N i H
- . " i
L i " .
3 E %
i ot

RAID is a set of

m Redundant Array of Independent physical disk drives
. viewed by the
Disks operating system as

a single logical drive

m Consists of seven levels, zero

through six

Design
architectures
share three
characteristics:

redundant disk capacity data are
is used to store parity distributed across
information, which the physical
guarantees data drives of an array
recoverability in case of in a scheme
a disk failure known as striping

m Not a true RAID because it does not
include redundancy to improve
RAI D performance or provide data
protection

Level O m User and system data are distributed

across all of the disks in the array

m Logical disk is divided into strips

R
.y >
strip 0 strip 1
R I"1-..________...--"'
strip 4 strip 5
o, — Mo—]
| strip 8 strip 9
e
strip 12 strip 13
i |""l-..._____,.--"'I

ia) RAID O inon-redundant)

RAID
Level 1

3

strip 1
P]

strip 5
I

strip 9

strip 13

{b) RAID 1 (mirrored)

strip 2
e
strip 6
e

strip 10
M

strip 14

II‘""'|—_,.._,_,—-"""I

-

m Redundancy is achieved by the simple
expedient of duplicating all the data

m There is no “write penalty”

m \When a drive fails the data may still be

accessed from the second drive

m Principal disadvantage is the cost

AT T
o]

strip 3
e
strip 7
e

strip 11
e

strip 15

|""'\-|___,_,_.-F"".

AT
R R e

strip 1
—

strip 5
P]

strip 9
Mo |

strip 13

strip 2
e
strip 6
i

strip 10
]

|"‘l-|_._'__,_,_.-""I

strip 14
e

G

strip 3
e
strip 7
P]

strip 11
e

strip 15

m Makes use of a parallel access

technique
RAI D m Data striping is used
Level 2 m Typically a Hamming code is used

m Effective choice in an environment
in which many disk errors occur

ic) RAID 2 (redundancy through Hamming code)

m Requires only a single redundant
disk, no matter how large the disk

RAID oy

m Employs parallel access, with data

Level 3 distributed in small strips

m Can achieve very high data transfer

rateg
T, T, P — T T
bo by b2 b3 P(b)
e e i e e

- — - e _——

(d) RAID 3 (bit-interleaved parity)

m Makes use of an independent access
technique

m A bit-by-bit parity strip is calculated
across corresponding strips on each
data disk, and the parity bits are stored in
the corresponding strip on the parity disk

RAID
Level 4

m |nvolves a write penalty when an I/O
write request of small size is performed

T, T T, T, T T, T
block 0 block 1 block 2 block 3 P(0-3)
block 4 block 5 block 6 block 7 Pi4-7)

~— ~ ~— — ~—
block 8 block 9 block 10 block 11 P(8-11)
block 12 block 13 block 14 block 15 P(12-15)

re— P M— — —

o -

(e) RAID 4 (block-level parity)

—_ o o

m Similar to RAID-4 but distributes the
parity bits across all disks

m Typical allocation is a round-robin

RAID
Level 5

scheme

m Has the characteristic that the loss of

any one disk does not result in data

loss
T T, — T, T, T T,
block 0 block 1 block 2 block 3 P(0-3)
block 4 block 5 block 6 P(4-7) block 7
block 8 block 9 P(8-11) block 10 block 11
block 12 P(12-15) block 13 block 14 block 15
Pi16-19) block 16 block 17 block 18 block 19
Ih"'"--____.--""" Iu Ih""--____.--""' Iu Eh""--____.--"'"'

= =

e -

e -

e -

= -

e o

(f) RAID 5 (block-level distributed parity)

RAID
Level 6

T,
|IL"‘----_____----""I

block 0
e

block 4
-

block §
—

block 12

= o o

(g) RAID 6 (dual redundancy)

T,
|I\"‘----_____----""‘I

block 1
~—

block 5
'.‘"""--—___---".'..'I

block 9
e~

P(12-15)

= e e

m Two different parity calculations are
carried out and stored in separate
blocks on different disks

m Provides extremely high data

availability

m |ncurs a substantial write penalty
because each write affects two parity

blocks
Ty Ty
S S
block 2 block 3
e e
block 6 Pi4-7)
] M]
P(8-11) Q8-11)
u I\.\-"""--—_——-"""'."I
Q(12-15) block 13
|"'‘''---._.____'_____,_.--""I |'''‘''---._.____'_____,_.--""I

~T T
"""‘----____.----""|

Q(0-3)
—
block 7
A
block 11
k.‘-‘-"'-——_——-"'.-".',

block 15

Table 11.4 RAID Levels

parity

Disks Large /0 Drata
Category Level | Deseription Required | Data Availability Transfer Capacity Small /O Request Rate
Striping 0 Nonredundant M Lower than single dizk Very high Very high for both read
and write
Mirroring 1 Mirrored N Higher than RAID 2, Higher than single disk for Lip-to twice that of a single
3, 4,01 5! lower than tead; similar fo single disk disk for read; similar 1o
RAID & [or weritis sinple disk for write
Paralle] access 2 Redundant via MN-+m Much higher thai single Highest of all histed Approximately twice that
Hamiing code dizk: comparable 1o alternatives of a single disk
RAID 3. 4, ot 5
3 Hit-mteriéaved TR | Much higher than single Highest of all listed Approxmately twice that
parity disk; compatable o alternatives of a single disk
RAID 2 4. 0r 5
Independeni 4 Block-mterleaved N1 Much higher than single Similarto RATD0 for read) Similar o BRATD 0 for read:
HCCERS parity disk; comparabic to significantly lower than single | sigaificantly lower than
BAMDZ 3 or 5 disk [or write single disk for write
5 Black-interleaved W1 mMuch higher than single | Similar to RAID 0 for read: Similar to RATM) for read:
distributed parity disk: camparable to lirver than single disk for generally lower than single
RalD 2 3 ord wrile disk for wrile
fi Block-imter|eaved N+ Highest of all listed Simitar to RAID0 for read: Srmilar to BATD 0 for read:
dual distributied altermatives fower than RATD 5 for write sigmficantly ower than

RA1D 5 for write

Note: N, ninmber of data dizsks; m, prapartsonal o log AL

Disk Cache "

Cache memory is used to apply to a memory that is smaller and faster
than main memory and that is interposed between main memory and the
processor

Reduces average memory access time by exploiting the principle of
locality

Disk cache is a buffer in main memory for disk sectors

Contains a copy of some of the sectors on the disk

the request is
when an /O request is satisfied via the cache

made for a particular sector,

a check is made to
determine if the sector is in
the disk cache the requested sector
is read into the disk
cache from the disk

Least Recently Used
(LRU)

m Most commonly used algorithm that deals with the design issue
of replacement strategy

m The block that has been in the cache the longest with no
reference to it is replaced

m A stack of pointers reference the cache
m most recently referenced block is on the top of the stack

m when a block is referenced or brought into the cache, it is placed on
the top of the stack

Least Frequently Used
(LFU)

m The block that has experienced the fewest references is replaced

m A counter is associated with each block
m Counter is incremented each time block is accessed

m \When replacement is required, the block with the smallest count
Is selected

Frequency-Based Replacement

New Section Old Section

MRU L L LRU

Re-reference;

count unchanged Re-reference;

count := count + 1

Miss (new block brought in)

count (=1

{a) FIFO

New Section Middle Section Old Section

o Joeee] | feee]] feee] fue

{h) Use of three sections

60 —

VAX UNIX

2
=
2 30-
20 —
IBM MVS
e
10 =
IBM SVS
0 —_
| | | | | 70
0 5 10 15 20 25 30
Cache size (megabytes) 60 =

Figure 11.10 Some Disk Cache Performance Results Using LRU

LRU
Disk Cache g .

IBM VM

IBM MVS

Disk cache o
=

20 =

g

Cache size (megahytes)

I ‘ } I I O rI I I a I l Ce Figure 11.11 Disk Cache Performance Using Frequency-Based Replacement [ROBI%0]

UNIX SVR4 File Subsystem

/0

Y

Buffer|Cache
m Two types of /O
m Buffered !
m system buffer Character Block
caches Device Drivers

m character queues
m Unbuffered

Figure 11.12 UNIX I/O Structure

Free List Pointers

Hash Pointers

Buffer
Cache

Device#, Block# - - -

m Three lists are
maintained:
m free list i
m device list :
m driver |/O Free Lis
queue

Figure 11.13 UNIX Buffer Cache Organization

‘Character
Queue

Used by character oriented devices

terminals and printers

Either written by the I/O device and read by the process or vice versa

producer/consumer model is used

Character queues may only be read once

as each character is read, it is effectively destroyed

Unbuffered |/O

m |s simply DMA between device and process space
m |s always the fastest method for a process to perform 1/O
m Process is locked in main memory and cannot be swapped out

m |/O device is tied up with the process for the
duration of the transfer making it unavailable
for other processes

Device |I/O in UNIX

Linux /0.

m Very similar to other UNIX implementation

m Associates a special file with each /O device driver
m Block, character, and network devices are recognized

m Default disk scheduler in Linux 2.4 is the Linux Elevator

For Linux 2.6 the Elevator algorithm has

been augmented by two additional
algorithms:

» the deadline I/O scheduler
» the anticipatory I/O scheduler

Sorted (elevator) queue

Deadline -
Scheduler

Read FIFO queue

m Uses three I >
queues:
m Incoming
requeStS Write FIFO queue
m read requests |
go to the tail of
a FIFO queue

m write requests
go to the tail of
a FIFO queue

m Each request has

an expiration time
Figure 11.14 The Linux Deadline I/O Scheduler

Anticipatory 1/0O Scheduler

m Elevator and deadline scheduling can be counterproductive if there
are numerous synchronous read requests

m Is superimposed on the deadline scheduler

m \When a read request is dispatched, the anticipatory scheduler
causes the scheduling system to delay

m there is a good chance that the application that issued the last read
request will issue another read request to the same region of the
disk

m that request will be serviced immediately

m otherwise the scheduler resumes using the deadline
scheduling algorithm

L|nux Page
- Cache

For Linux 2.4 and later there is a single unified page cache for all
traffic between disk and main memory

Benefits:
m dirty pages can be collected and written out efficiently

m pages in the page cache are likely to be referenced again due to
temporal locality

I/O Manager
Cache

Wl N d OWS Manager
I / O File System

Drivers
M a n a g e r Network

Drivers

Hardware
Device Drivers

Figure 11.15 Windows I/O Manager

‘Basic I/O Facilities:

m Cache Manager m Network Drivers
m maps regions of files into = Windows includes
kernel virtual memory and integrated networking
then relies on the virtual capabilities and support for
memory manager to copy remote file systems
pages to and from the files m the facilities are
on disk implemented as software
drivers
m File System Drivers m Hardware Device Drivers
m sends I/O requests to m the source code of

Windows device drivers
is portable across
different processor types

the software drivers that
manage the hardware
device adapter

Asynchronous and
Synchronous |/O

modes of |/O
operation

Windows offers two

asynchronous

Is used whenever

possible to optimize
application

performance

an application initiates an
|/O operation and then
can continue processing
while the |/O request is
fulfilled

synchronous

the application is
blocked until the 1/0
operation completes

S

« Windows provides five different
techniques for signaling I/O completion:

 Signaling the file object

» Signaling an event object

- Asynchronous procedure call

* |/O completion ports

 Polling

Windows RAI D Configurations

m \Windows supports two sorts of RAID
confiaurations:

Hardware RAID Software RAID

separate physical noncontiguous disk
disks combined into space combined
one or more logical into one or more

disks by the disk logical partitions by

controller or disk the fault-tolerant
storage cabinet software disk
hardware driver, FTDISK

Volume Shadow Copies and
Volume Encryption %

m Volume Shadow
Copies

m efficient way of making
consistent snapshots of
volumes so they can be
backed up

m also useful for archiving
files on a per-volume
basis

m implemented by a
software driver that
makes copies of data on
the volume before it is
overwritten

m Volume

1A

Encryption

Windows uses BitLocker
to encrypt entire volumes

more secure than
encrypting individual files

allows multiple
interlocking layers of
security

‘Summary

I/O architecture is the computer system’s interface to the outside world

I/O functions are generally broken up into a number of layers

A key aspect of I/O is the use of buffers that are controlled by I/O utilities rather
than by application processes

Buffering smoothes out the differences between the speeds

The use of buffers also decouples the actual I/O transfer from the address
space of the application process

Disk I/O has the greatest impact on overall system performance

Two of the most widely used approaches are disk scheduling and the disk
cache

A disk cache is a buffer, usually kept in main memory, that functions as a cache
of disk block between disk memory and the rest of main memory

