
Chapter 11

I/O Management

and Disk Scheduling
Seventh Edition

By William Stallings

Operatin

g

Systems:

Internals

and

Design

Principle

s

Operating Systems:Operating Systems:

Internals and Design PrinciplesInternals and Design Principles

An artifact can be thought of as a meeting point—an

“interface” in today’s terms between an “inner”

environment, the substance and organization of the

artifact itself, and an “outer” environment, the

surroundings in which it operates. If the inner

environment is appropriate to the outer

environment, or vice versa, the artifact will serve its

intended purpose.

— THE SCIENCES OF THE ARTIFICIAL,

Herbert Simon

External devices that engage in I/O with computer

systems can be grouped into three categories:

� Devices differ in a number of areas:

� Three techniques for performing I/O are:

� Programmed I/O

� the processor issues an I/O command on behalf of a process to an I/O
module; that process then busy waits for the operation to be completed
before proceeding

� Interrupt-driven I/O

� the processor issues an I/O command on behalf of a process

� if non-blocking – processor continues to execute instructions from the
process that issued the I/O command

� if blocking – the next instruction the processor executes is from the OS,
which will put the current process in a blocked state and schedule another
process

� Direct Memory Access (DMA)

� a DMA module controls the exchange of data between main memory and
an I/O module

Techniques for Performing I/O

Efficiency

� Major effort in I/O design

� Important because I/O

operations often form a

bottleneck

� Most I/O devices are extremely

slow compared with main

memory and the processor

� The area that has received the

most attention is disk I/O

Generality

� Desirable to handle all devices

in a uniform manner

� Applies to the way processes

view I/O devices and the way

the operating system manages

I/O devices and operations

� Diversity of devices makes it

difficult to achieve true

generality

� Use a hierarchical, modular

approach to the design of the

I/O function

� Functions of the operating system should be separated according

to their complexity, their characteristic time scale, and their level of

abstraction

� Leads to an organization of the operating system into a series of

layers

� Each layer performs a related subset of the functions required of

the operating system

� Layers should be defined so that changes in one layer do not

require changes in other layers

� Perform input transfers in advance of requests being made and perform

output transfers some time after the request is made

No BufferNo Buffer
� Without a buffer, the OS

directly accesses the device

when it needs

Single BufferSingle Buffer � Operating system assigns

a buffer in main memory

for an I/O request

� Input transfers are made to the system buffer

� Reading ahead/anticipated input

� is done in the expectation that the block will eventually be needed

� when the transfer is complete, the process moves the block into user

space and immediately requests another block

� Generally provides a speedup compared to the lack of system

buffering

� Disadvantages:

� complicates the logic in the operating system

� swapping logic is also affected

� Line-at-a-time operation

� appropriate for scroll-mode

terminals (dumb terminals)

� user input is one line at a

time with a carriage return

signaling the end of a line

� output to the terminal is

similarly one line at a time

� Byte-at-a-time operation

� used on forms-mode

terminals

� when each keystroke is

significant

� other peripherals such as

sensors and controllers

Double BufferDouble Buffer

� Use two system buffers instead

of one

� A process can transfer data to

or from one buffer while the

operating system empties or

fills the other buffer

� Also known as buffer swapping

Circular BufferCircular Buffer

� Two or more buffers are used

� Each individual buffer is one

unit in a circular buffer

� Used when I/O operation must

keep up with process

� Technique that smoothes out peaks in I/O demand

� with enough demand eventually all buffers become full and their

advantage is lost

� When there is a variety of I/O and process activities to service,

buffering can increase the efficiency of the OS and the

performance of individual processes

Disk Disk
PerformancPerformanc
e e
ParametersParameters

� The actual details of disk I/O

operation depend on the:

� computer system

� operating system

� nature of the I/O

channel and disk

controller hardware

� When the disk drive is operating, the disk is rotating at constant
speed

� To read or write the head must be positioned at the desired track
and at the beginning of the desired sector on that track

� Track selection involves moving the head in a movable-head
system or electronically selecting one head on a fixed-head system

� On a movable-head system the time it takes to position the head at
the track is known as seek time

� The time it takes for the beginning of the sector to reach the head is
known as rotational delay

� The sum of the seek time and the rotational delay equals the
access time

� Processes in sequential order

� Fair to all processes

� Approximates random scheduling in

performance if there are many processes

competing for the disk

FirstFirst--In, FirstIn, First--Out (FIFO)Out (FIFO)

� Control of the scheduling is outside the control of disk

management software

� Goal is not to optimize disk utilization but to meet other objectives

� Short batch jobs and interactive jobs are given higher priority

� Provides good interactive response time

� Longer jobs may have to wait an excessively long time

� A poor policy for database systems

Shortest Shortest

ServiceService

Time First Time First

(SSTF)(SSTF)

� Select the disk I/O request

that requires the least

movement of the disk arm

from its current position

� Always choose the

minimum seek time

SCANSCAN

� Also known as the elevator algorithm

� Arm moves in one direction only

� satisfies all outstanding requests until
it reaches the last track in that
direction then the direction is reversed

� Favors jobs whose requests are for
tracks nearest to both innermost and
outermost tracks

CC--SCANSCAN
(Circular SCAN)(Circular SCAN)

� Restricts scanning to one

direction only

� When the last track has been

visited in one direction, the arm

is returned to the opposite end

of the disk and the scan begins

again

� Segments the disk request queue into subqueues of length N

� Subqueues are processed one at a time, using SCAN

� While a queue is being processed new requests must be added

to some other queue

� If fewer than N requests are available at the end of a scan, all of

them are processed with the next scan

� Uses two subqueues

� When a scan begins, all of the requests are in one of the

queues, with the other empty

� During scan, all new requests are put into the other queue

� Service of new requests is deferred until all of the old requests

have been processed

Table 11.2 Comparison of Disk Scheduling Algorithms

Table 11.3 Disk Scheduling Algorithms

� Redundant Array of Independent

Disks

� Consists of seven levels, zero

through six

RAID RAID
Level 0Level 0

� Not a true RAID because it does not

include redundancy to improve

performance or provide data

protection

� User and system data are distributed

across all of the disks in the array

� Logical disk is divided into strips

RAID RAID
Level 1Level 1

� Redundancy is achieved by the simple

expedient of duplicating all the data

� There is no “write penalty”

� When a drive fails the data may still be

accessed from the second drive

� Principal disadvantage is the cost

RAID RAID
Level 2Level 2

� Makes use of a parallel access

technique

� Data striping is used

� Typically a Hamming code is used

� Effective choice in an environment

in which many disk errors occur

RAID RAID
Level 3Level 3

� Requires only a single redundant

disk, no matter how large the disk

array

� Employs parallel access, with data

distributed in small strips

� Can achieve very high data transfer

rates

RAID RAID
Level 4Level 4

� Makes use of an independent access

technique

� A bit-by-bit parity strip is calculated

across corresponding strips on each

data disk, and the parity bits are stored in

the corresponding strip on the parity disk

� Involves a write penalty when an I/O

write request of small size is performed

RAID RAID
Level 5Level 5

� Similar to RAID-4 but distributes the

parity bits across all disks

� Typical allocation is a round-robin

scheme

� Has the characteristic that the loss of

any one disk does not result in data

loss

RAIDRAID
Level 6Level 6

� Two different parity calculations are

carried out and stored in separate

blocks on different disks

� Provides extremely high data

availability

� Incurs a substantial write penalty

because each write affects two parity

blocks

Table 11.4 RAID Levels

� Cache memory is used to apply to a memory that is smaller and faster

than main memory and that is interposed between main memory and the

processor

� Reduces average memory access time by exploiting the principle of

locality

� Disk cache is a buffer in main memory for disk sectors

� Contains a copy of some of the sectors on the disk

� Most commonly used algorithm that deals with the design issue

of replacement strategy

� The block that has been in the cache the longest with no

reference to it is replaced

� A stack of pointers reference the cache

� most recently referenced block is on the top of the stack

� when a block is referenced or brought into the cache, it is placed on

the top of the stack

� The block that has experienced the fewest references is replaced

� A counter is associated with each block

� Counter is incremented each time block is accessed

� When replacement is required, the block with the smallest count

is selected

FrequencyFrequency--Based ReplacementBased Replacement

Disk Cache Disk Cache

PerformancePerformance

LRULRU

FrequencyFrequency--Based Based

ReplacementReplacement

UNIX SVR4 UNIX SVR4

I/OI/O

� Two types of I/O

� Buffered

� system buffer

caches

� character queues

� Unbuffered

Buffer Buffer
CacheCache

� Three lists are

maintained:

� free list

� device list

� driver I/O

queue

� Is simply DMA between device and process space

� Is always the fastest method for a process to perform I/O

� Process is locked in main memory and cannot be swapped out

� I/O device is tied up with the process for the

duration of the transfer making it unavailable

for other processes

Device I/O in UNIXDevice I/O in UNIX

� Very similar to other UNIX implementation

� Associates a special file with each I/O device driver

� Block, character, and network devices are recognized

� Default disk scheduler in Linux 2.4 is the Linux Elevator

Deadline Deadline

SchedulerScheduler

� Uses three
queues:

� incoming
requests

� read requests
go to the tail of
a FIFO queue

� write requests
go to the tail of
a FIFO queue

� Each request has
an expiration time

� Elevator and deadline scheduling can be counterproductive if there

are numerous synchronous read requests

� Is superimposed on the deadline scheduler

� When a read request is dispatched, the anticipatory scheduler

causes the scheduling system to delay

� there is a good chance that the application that issued the last read

request will issue another read request to the same region of the

disk

� that request will be serviced immediately

� otherwise the scheduler resumes using the deadline

scheduling algorithm

� For Linux 2.4 and later there is a single unified page cache for all

traffic between disk and main memory

� Benefits:

� dirty pages can be collected and written out efficiently

� pages in the page cache are likely to be referenced again due to

temporal locality

Windows Windows
I/O I/O

ManagerManager

� Network Drivers

� Windows includes
integrated networking
capabilities and support for
remote file systems

� the facilities are
implemented as software
drivers

� Hardware Device Drivers

� the source code of
Windows device drivers
is portable across
different processor types

� Cache Manager

� maps regions of files into
kernel virtual memory and
then relies on the virtual
memory manager to copy
pages to and from the files
on disk

� File System Drivers

� sends I/O requests to

the software drivers that

manage the hardware

device adapter

� Windows provides five different

techniques for signaling I/O completion:

� Windows supports two sorts of RAID

configurations:

� Volume Shadow

Copies

� efficient way of making

consistent snapshots of

volumes so they can be

backed up

� also useful for archiving

files on a per-volume

basis

� implemented by a

software driver that

makes copies of data on

the volume before it is

overwritten

� Volume

Encryption

� Windows uses BitLocker

to encrypt entire volumes

� more secure than

encrypting individual files

� allows multiple

interlocking layers of

security

� I/O architecture is the computer system’s interface to the outside world

� I/O functions are generally broken up into a number of layers

� A key aspect of I/O is the use of buffers that are controlled by I/O utilities rather
than by application processes

� Buffering smoothes out the differences between the speeds

� The use of buffers also decouples the actual I/O transfer from the address
space of the application process

� Disk I/O has the greatest impact on overall system performance

� Two of the most widely used approaches are disk scheduling and the disk
cache

� A disk cache is a buffer, usually kept in main memory, that functions as a cache
of disk block between disk memory and the rest of main memory

