
MEMORY
MANAGEMENT

ROADMAP

Basic requirements of Memory Management

Memory Partitioning

Basic blocks of memory management

 Paging

 Segmentation

Most computers have a memory
hierarchy with small amount of very
fast , expensive, volatile cache
memory, RAM and cheap, non volatile
HDD.
The part of the OS that manages this
memory hierarchy is known as Memory
Manager:
 Keep track of which part of memory are

available and which are in use.
 It also allocates memory to processes and

deallocates when they are done.
 It also manages swapping between main

memory and disk.
Memory management algorithms vary
from machine approach to paging and
segmentation strategies.

THE NEED FOR MEMORY
MANAGEMENT

Memory is cheap today, and getting
cheaper
 But applications are demanding more and

more memory, there is never enough!

Memory Management, involves swapping
blocks of data from secondary storage.

Memory I/O is slow compared to a CPU
 The OS must cleverly time the swapping

to maximise the CPU’s efficiency

Memory is a large array of words/bytes, each with its own
address.
CPU fetches instructions from memory according to the
value of the Program counter.
Two level of memory management:

Each process gets from the OS, a block of memory to use.
But the process itself handles the internal management of
memory.
Level 2 manages the memory which was previously
allocated by the OS in level 1.

OS memory manager

Process memory
manager

Level - 1

 Level - 2

MEMORY MANAGEMENT REQUIREMENTS

Relocation

Protection

Sharing
Logical organisation

Physical organisation

Source code converted to load module:

REQUIREMENTS: RELOCATION

The programmer does not know where
the program will be placed in memory
when it is executed,
 it may be swapped to disk and return to

main memory at a different location
(relocated)

Memory references must be translated
to the actual physical memory address

MEMORY MANAGEMENT
TERMS

Term Description

Frame Fixed-length block of main
memory.

Page
Fixed-length block of data
in secondary memory (e.g.
on disk).

Segment
Variable-length block of
data that resides in
secondary memory.

Table 7.1 Memory Management Terms

ADDRESSING

REQUIREMENTS: PROTECTION

Processes should not be able to
reference memory locations in another
process without permission

Impossible to check absolute addresses
at compile time

Must be checked at run time

REQUIREMENTS: SHARING

Allow several processes to access the
same portion of memory

Better to allow each process access to
the same copy of the program rather
than have their own separate copy

REQUIREMENTS: LOGICAL ORGANIZATION

Memory is organized linearly

Programs are written in modules
Modules can be written and compiled

independently

Different degrees of protection given to
modules (read-only, execute-only)

Share modules among processes

Segmentation helps here

REQUIREMENTS: PHYSICAL ORGANIZATION

Cannot leave the programmer with the
responsibility to manage memory

Memory available for a program plus
its data, may be insufficient
Overlaying allows various modules to be

assigned the same region of memory but
is time consuming to program

Programmer does not know how much
space will be available

PARTITIONING

An early method of managing memory
 Pre-virtual memory

Not used much now

But, it will clarify the later discussion
of virtual memory if we look first at
partitioning
 Virtual Memory has evolved from the

partitioning methods

TYPES OF PARTITIONING

Fixed Partitioning

Dynamic Partitioning

Simple Paging

Simple Segmentation

Virtual Memory Paging

Virtual Memory Segmentation

FIXED PARTITIONING

Equal-size partitions (see fig a)

 Any process whose size is less than
or equal to the partition size can be
loaded into an available partition

The operating system can swap a
process out of a partition
 If none are in a ready or running

state

FIXED PARTITIONING PROBLEMS

A program may not fit in a partition.
 The programmer must design the program

with overlays

Main memory use is inefficient.
 Any program, no matter how small,

occupies an entire partition.

 This is results in internal fragmentation.

SOLUTION – UNEQUAL SIZE
PARTITIONS

Lessens (less size block) both
problems
 but doesn’t solve completely

In Fig b,
 Programs up to 16M can be

accommodated without overlay

 Smaller programs can be placed in
smaller partitions, reducing internal
fragmentation

PLACEMENT ALGORITHM

Equal-size
 Placement is trivial (no options)

Unequal-size
 Can assign each process to the smallest

partition within which it will fit

Queue for each partition

 Processes are assigned in such a way as
to minimize wasted memory within a
partition

FIXED PARTITIONING

REMAINING PROBLEMS WITH FIXED
PARTITIONS

The number of active processes is
limited by the system
 I.E limited by the pre-determined number

of partitions

A large number of very small process
will not use the space efficiently
 In either fixed or variable length partition

methods

DYNAMIC PARTITIONING

Partitions are of variable length and number

Process is allocated exactly as much
memory as required

DYNAMIC PARTITIONING
EXAMPLE

External Fragmentation
Memory external to all processes
is fragmented
Can resolve using compaction
OS moves processes so that they

are contiguous
 Time consuming and wastes CPU

time

OS (8M)

P1
(20M)

P2
(14M)

P3
(18M)

Empty
(56M)

Empty (4M)

P4(8M)
Empty (6M)

P2
(14M)

Empty (6M)

DYNAMIC PARTITIONING

Operating system must decide which free block
to allocate to a process

Best-fit algorithm
 Chooses the block that is closest in size to the

request
 Worst performer overall

 Since smallest block is found for process, the smallest
amount of fragmentation is left

 Memory compaction must be done more often

DYNAMIC PARTITIONING

First-fit algorithm
 Scans memory from the beginning and

chooses the first available block that is
large enough

 Fastest
May have many process loaded in the

front end of memory that must be
searched over when trying to find a free
block

DYNAMIC PARTITIONING

Next-fit
 Scans memory from the location of the

last placement

More often allocate a block of memory at
the end of memory where the largest
block is found

 The largest block of memory is broken up
into smaller blocks

 Compaction is required to obtain a large
block at the end of memory

ALLOCATION

RELOCATION

When program loaded into memory the
actual (absolute) memory locations are
determined
A process may occupy different
partitions which means different absolute
memory locations during execution

 Swapping

 Compaction

ADDRESSES

Logical
 Reference to a memory location

independent of the current assignment of
data to memory.

Relative
 Address expressed as a location relative to

some known point.

Physical or Absolute
 The absolute address or actual location in

main memory.

RELOCATION

REGISTERS USED DURING EXECUTION

Base register
 Starting address for the process

Bounds register
 Ending location of the process

These values are set when the process
is loaded or when the process is
swapped in

REGISTERS USED DURING EXECUTION

The value of the base register is
added to a relative address to produce
an absolute address

The resulting address is compared with
the value in the bounds register

If the address is not within bounds, an
interrupt is generated to the operating
system

PAGING
Partition memory into small equal fixed-
size chunks and divide each process
into the same size chunks

The chunks of a process are called
pages
The chunks of memory are called
frames
Operating system maintains a page
table for each process
 Contains the frame location for each page

in the process
Memory address consist of a page number

and offset within the page

PROCESSES AND FRAMES

A.0
A.1
A.2
A.3
B.0
B.1
B.2
C.0
C.1
C.2
C.3

D.0
D.1
D.2

D.3
D.4

PAGE TABLE

SEGMENTATION

A program can be subdivided into segments
 Segments may vary in length

 There is a maximum segment length

Addressing consist of two parts
 a segment number and

 an offset

Segmentation is similar to dynamic partitioning

