
Chapter 8 : Array
➢ Array is fixed sized sequence collection of elements of

same data type.
➢ It is simply a grouping of like-type data.
➢ It is simplest form, an array can be used to represent a

list of numbers, or a list of names.
➢ Array index starts from 0.
Uses of array

➢ List of temperatures recorded every hour in a day or a
month or a year.

➢ List of employees in organization.
➢ List of products and their cost sold by a store.
➢ Test score of a class of students.
➢ List of customers and their telephone numbers.
➢ Table of daily rainfall data.
Types of array

• One-dimensional array

• Two-dimensional array

• Multi-dimensional array
One-dimensional array

➢ A list of items can be given one variable name using only
one subscript and such a variable is called a single-
subscripted variable a one-dimensional array.

➢ If we want to calculate average of n values of x we can do
easily with array.

➢ It can be expressed as x[1],x[2],x[3],….x[n].

➢ If we want to represent a set of five
numbers(11,40,2,45,12) by an array variable number,
then we may declare the variable number as int
number[5];

Declaration of array
➢ Array must be declare before they are used so that

computer can allocate space for them in memory.
➢ General form of declaration type variable_name[size];
➢ The type specifies the type of elements that will be

contained in array, such int, float, or char.
➢ For example float height[50];
➢ Any reference to the arrays outside the declared limits

would not necessarily cause an error. Rather, it might
result in unpredictable program results.

➢ The size should be either a numeric constant or symbolic
constant

➢ The c language treats characters string simply as arrays of
characters . The size in a character string represents the
maximum number of characters . For instance char

name[10];
➢ Declares the name as a character array variable that can

hold a maximum of characters. We read string constant
into variable name. “WELL DONE”.
‘W’ ‘E’ ‘L’ ‘L’ ‘D’ ‘O’ ‘N’ ‘E’ ‘\0’

➢ Each character of string is treated as an element of array
name is stored in the memory as follows.

Initialization of one-dimensional array

➢ After array is declared, its elements must be initialized
otherwise, they will contain “garbage”.

➢ An array can be initialized at either of the following stages:

◆ At compile time

◆ At run time
Compile time initialization

➢ We can initialize the the elements of arrays in same way
as the ordinary variables when they are declared.

➢ The general form of initialization of array is
type array_name[size]= { list of values };

➢ For example
int number[3] = { 0, 0, 0 };

➢ The size may be omitted. In such cases, the compiler
allocates space for all initialized elements.
int counter[] = { 1, 1, 1, 1 };

➢ Character arrays may be initialized in a similar manner.
char name[] = { ‘j’, ‘o’, ‘h’, ‘n’};

➢ Declares the name to be an array of five characters,
initialized with the string “john” ending with null character.
char name [] = “john”;

➢ The number of initializers may be less than the declared
size. In such cases, the remaining elements are initialized
to zero, If the array type is numeric and null if type is char.

int number [5] = {10, 20 };
➢ Initialize the first two elements to 10 and 20 respectively,

and the remaining elements to 0.

char city [5] = { ‘B’ };
Run time initialization

➢ An array can be explicitly initialized at run time. This
approach is usually applied for initializing large arrays.

➢ For example consider following segment of c program.
for(i=0;i<100;i++)

{
if (i<50)

sum[i] = 0.0;
else

sum[i] = 1.0;
}

➢ First 50 element of array sum are initialized to zero while
remaining 50 are 1 at run.
Two-dimensional array

➢ Array variables can store a list of values. There could be
situations where a table of values will have to be stored .

➢ Consider a table shows marks of 3 subjects of 5 students.

Subjec
t1

Subjec
t2

subjec
t3

Studen
t1

75 67 66

studen
t2

56 58 62

Studen
t3

88 83 72

This table contains total 9 values, three in each line. Each
row represents marks of student, each column represents
marks of particular subject.

This table discussed above can be defined in c as a[3][3];
➢ Two-dimensional array are declared as follow

type array_name[row_size][column_size];
➢ Each dimension arrays is indexed from zero to its

maximum size minus one, the first index selects the row
and second index selects column within that row.

Initialization of two-dimensional array

➢ Initializes the elements of the first row to zero and second
row to one. The initialization is done row by row.

int table[2][3] = { {0, 0, 0}, {1, 1, 1} };
➢ We can also initialize two-dimensional array in form of

matrix.
int table[2][3] = {

{0, 0, 0},
{1, 1, 1}
};

➢ the values are missing in an initializer, they are
automatically set to zero.

int table[2][3] = { {1,1}, {2} };
Multi-dimensional array

➢ C allows arrays of three or more dimensions. The exact
limit is determined by the computers.

➢ The general form of array is type
array_name[s1][s2][s3]…[sm];

➢ Examples of array : int survey [3][5][12];
survey is a four dimensional array declared to contain 180

integer
type.
➢ The array survey may represent a survey data of rain fall

during the last three years from January to December in
five cities.

Dynamic arrays
➢ An array created at compile time by specifying size in

source code has a fixed size and cannot be modified at
run time.

➢ The process of allocating memory at compile time is
known as static memory allocation and the arrays that
receive static memory allocation are called static arrays.

➢ In c it is possible to allocate memory to arrays at run time.
This feature is known as dynamic memory allocation and
arrays created at run time are dynamic arrays.

➢ Dynamic arrays are created using what are known as
pointer variables and memory management functions
malloc, calloc, realloc.

➢ The concept of dynamic arrays Is used in creating and
manipulating data structers such as linked lists, stacks
and queues.

An ‘c’ program of array : Find the sum of 5 numbers
#include<stdio.h>
Void main()
{

int a[5],i,sum=0;
printf(“enter 5 numbers”);
for(i=0;i<5;i++)
{

scanf(“%d”,&a[i]);
sum=sum+a[i];
}
printf(“sum=%d”,sum);

}
A ‘c’ program of two-dimensional array: matrix
#include<stdio.h>
void main()
{

int i,j,a[2][2];
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{scanf(“%d”,&a[i][j]);}}
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{printf(“%d “,a[i][j]);}
{printf(“\n”);

}
Chapter 9: Strings

➢ C implements the string data structure using arrays of
type char.

➢ You have already used the string extensively.

o printf(“This program is terminated!\n”);

o #define ERR_Message “Error!!”
➢ Since string is an array, the declaration of a string is the

same as declaring a char array.

o char string_var[30];

o char string_var[20] = “Initial value”;
➢ Simple String Program:-

#include<stdio.h>
void main()
{

char str1[3],str2[5];
Printf(“Enter city”);
Scanf(“%s”,str1);
Printf(“Enter second city “);
Scanf(“%s”,str2);
Printf(“%s %s”,str1,str2);

}

O/P:-Enter city
New
Enter second city
York
New York

➢ Memory Storage for a String
➢ The string is always ended with a null character ‘\0’.
➢ The characters after the null character are ignored.
➢ e.g., char str[20] = “Initial value”;

n i t i a l v a l u e ? ? …I \
0

[
0
]

[1
3]

➢ Arrays of Strings
➢ An array of strings is a two-dimensional array of

characters in which each row is one string.

o char names[People][Length];
➢ char month[5][10] = {“January”, “February”, “March”,

“April”, “May”};

➢ Input/Output of a String
➢ The placeholder %s is used to represent string arguments

in printf and scanf.

o printf(“Topic: %s\n”, string_var);
➢ The string can be right-justified by placing a positive

number in the placeholder.

o printf(“%8s”, str);
➢ The string can be left-justified by placing a negative

number in the placeholder.

o Printf(“%-8s”, str);

The “%8s” placeholder displays
a string which is right-justified
and in 8-columns width.
If the actual string is longer than
the width, the displayed field is
expanded with no padding.

The dept is the
initial memory

➢ String Library Functions
➢ The string can not be copied by the assignment operator

‘=’.

o e..g, “str = “Test String”” is not valid.

o C provides string manipulating functions in the
“string.h” library.

o The complete list of these functions can be found in
Appendix B of the textbook.

➢ Some String Functions from String.h

Functio
n

Purpose Example

➢ strcpy ➢ Makes a copy of a
string

➢ strcpy(s1,
“Hi”);

➢ strcat ➢ Appends a string to
the end of another
string

➢ strcat(s1,
“more”);

➢ strcmp ➢ Compare two strings
alphabetically

➢ strcmp(s1,
“Hu”);

➢ strlen ➢ Returns the number
of characters in a
string

➢ strlen(“Hi”)
returns 2.

➢ strtok ➢ Breaks a string into
tokens by
delimiters.

➢ strtok(“Hi,
Chao”, “ ,”);

➢ Functions strcpy and strncpy
➢ Function strcpy copies the string in the second argument

into the first argument.

o e.g., strcpy(dest, “test string”);

o The null character is appended at the end
automatically.

o If source string is longer than the destination string,
the overflow characters may occupy the memory
space used by other variables.

o Function strncpy copies the string by specifying the
number of characters to copy.

o You have to place the null character manually.

o e.g., strncpy(dest, “test string”, 6); dest[6] = ‘\0’;

o If source string is longer than the destination string,
the overflow characters are discarded automatically.

➢ Functions strcat and strlen
➢ Functions strcat and strncat concatenate the fist string

argument with the second string argument.

o strcat(dest, “more..”);

o strncat(dest, “more..”, 3);
➢ Function strlen is often used to check the length of a

string (i.e., the number of characters before the fist null
character).

o e.g., dest[6] = “Hello”;
strncat(dest, “more”, 5-strlen(dest));
dest[5] = ‘\0’;

➢ Example Of Strlen():-
#include<stdio.h>
#include<string.h>
void main()
{

Char str[20];
int n;
Printf(“Enter the word \n”);
Scanf(“%s”,str);
n=strlen(str);
Printf(“Length of word is %d \n”,n);

}
O/P:-
Enter the word
Hello
Length of word is 5

➢ Example of Strcat():-

#include<stdio.h>
#include<conio.h>
void main()
{

char str1[20],str2[20],n[40];
Printf(“Enter any word \n”);
Scanf(“%s”,str1);
Printf(“Enter second word \n”);
Scanf(“%s”,str2);
strcat(str1,str2);
Printf(“Concat string is %s”,str1);

}
O/P:-Enter any word
abc
Enter second word
def

➢ Concat string is abcdef

 We can use strncpy to extract
substring of one string.

 e.g., strncpy(result, &s1[5], 2);

➢ Distinction Between Characters and Strings
➢ The representation of a char (e.g., ‘Q’) and a string (e.g.,

“Q”) is essentially different.
➢ A string is an array of characters ended with the null

character
Q

Character ‘Q’
Q \0
String “Q”

➢ String Comparison (1/2)
➢ Suppose there are two strings, str1 and str2.

o The condition str1 < str2 compare the initial memory
address of str1 and of str2.

➢ The comparison between two strings is done by comparing
each corresponding character in them.

o The characters are comapared against the ASCII
table.

o “thrill” < “throw” since ‘i’ < ‘o’;

o “joy” < joyous“;
➢ The standard string comparison uses the strcmp and

strncmp functions
➢ Relationship ➢ Returned

Value
➢ Example

➢ str1 < str2 ➢ Negative ➢ “Hello”< “Hi”

➢ str1 = str2 ➢ 0 ➢ “Hi” = “Hi”

➢ str1 > str2 ➢ Positive ➢ “Hi” > “Hello”

➢ One can check if two strings are the same by
➢ if(strcmp(str1, str2) != 0)

printf(“The two strings are different!”);

