
CHAPTER 3

CPU(2110003)

3. Control structure in ‘C‘

Control Structure for decision Making

1. if…else statement
2. switch statement
3. go to statement
4. break statement

Decision Making with If statement.

1.Simple if

➢ General Syntax of simple if statement is as follow:
➢ Syntax:

If(condition)

{
Statement 1;
Statement 2;

}
Statement - X;

 In the above syntax the statement block may be a single
statement or a group of statements.

 The simple if statement is executed in the following order.
1. first the condition is checked.
2. if the condition is true then the statement block is executed

and then statement-x is executed.
 if the condition is false then only statement –x is
executed.

CHAPTER 3

CPU(2110003)

Flow chart :

Example :

If(x>0)
{

printf(“X is positive number”);
}
printf(“General statement ”);

2. If..Else statement.
➢ The general syntax of if..else statement is as follow:
➢ Syntax:

If(condition)
{

True Block statement(s);
}

Else
{

False block statement(s);
}

CHAPTER 3

CPU(2110003)

The if..else statement is executed in the following order:
1. first the condition is checked.
2. if condition is true, the true statement is executed.
3. if condition is false, the false statement is executed.

Flow chart :

Example :

if(x>=0)
{

printf(“X is positive number”);
}
else
{

printf(“X is negative number”);
}

CHAPTER 3

CPU(2110003)

3.Nesting if-else statement.

 When the more then one condition is to be checked then we can
use nesting of if..else first the condition is checked.

 The syntax of nesting if..else statement is as follow:
Syntax:

If(condition 1)
{

If(condition 2)
{

Statement-1;

}
Else

{
Statement-2;

}
}

Else
{

Statement-3;

}
The nesting if-else statement is executed in the following
manner.

1. First the condition 1 is checked.
2. if the condition 1 is true then condition 2 is checked. If

condition 2 is true then statement-1 is executed.
3. but if the condition 2 is false the statement-2 is executed.
4. if condition 1 is false the statement-3 is executed.

CHAPTER 3

CPU(2110003)

Flow chart :

Example :
If(a>b)

{
If(a>c)
{

Printf(“a is maximum”);
}
Else
{

Printf(“c is maximum”);
}

}
Else
{

If(b>c)
{

Printf(“b is maximum”);
}
Else
{

Printf(“c is Maximum”);
}

}

CHAPTER 3

CPU(2110003)

4.Else-if ladder.

 The if..else ladder statement provide two-way decision where we
select one of the alternative.

 It is used for multiple choice.
 The two way decision is done by nested if..else is not sufficient.
 Following is the syntax of the if..else ladder.

Syntax:
If(condition-1)
{

Statement(s)-1;
}
Else if(condition-2)
{

Statement(s)-2;
}
Else if(condition-3)
{

Statement(s)-3;
}

.

.

.
Else if(condition-N)
{

Statement(s)-N;
}
Else
{

Default statement(s)-N;
}

CHAPTER 3

CPU(2110003)

 if-else-if ladder is executed in the following order:

1. first condition-1 is executed , if the condition-1 is true then the
statement-1 is executed.

2. if the condition-1 is false then condition-2 is checked. If
condition-2 is true then statement-2 is executed.

3. This procedure repeated until all the condition is checked. if all
the condition became false then the default statement is
executed.\

Flow chart :

CHAPTER 3

CPU(2110003)

Example :

if(n == 1)
{

printf("Monday");
}

else if(n==2)
{

printf("Tuesday");
}

else if(n==3)
{

printf("Wednesday");
}
else if(n==4)
{

printf("Thursday");
}

else if(n==5)
{

printf("Friday");
}

else if(n==6)
{

printf("Saturday");
}

else if(n==7)
{

printf("Sunday");
}

else
{

printf("Invalid input");
}

CHAPTER 3

CPU(2110003)

Decision Making with Switch statement.

The switch statement is also known as multi-choice or multi
decision statement.

Writing the code using the multiple if..else becomes lengthy and
also difficult to manage. Using switch statement it is done by easy.

 It provide the choice for each value of variable or expression.
The switch statement test the value of a given variable against a

list of case values and when the match is found, a statement
associated with the case is executed.

General syntax of switch case statement is as follow:

Switch(variable name or expression)
{
Case 1:

statement(s)1;
Break;

Case 2:
statement(s)2;
Break;

.

.
Case N:

statement(s)N;
Break;

Default :
default_statement(s);

}

 The expression or variable name is an integer or characters.

 Value-1,value-2 is constant or known as case labels ,each case
label value must be unique with a switch statement. each case
label must end with (;).

CHAPTER 3

CPU(2110003)

 The switch..case statement is executed in the following
order:

1. the value of the expression is compared against the value
of case label.

2. if the case is found whose value match with value of the
expression ,then the statement associated with the case is
executed. there is a single statement or multiple
statement. There is break which send the control to the
next statement.

3. if the value of the expression does not match with any
case value then the statement associated with the default
case is executed.

Flow chart :

CHAPTER 3

CPU(2110003)

Example :
switch(ch)
{

case '+':
printf("%d + %d = %d",a, b, a+b);
break;

case '-':
printf("%d - %d = %d",a, b, a-b);
break;

case '*':
printf("%d * %d = %d",a, b, a*b);
break;

case '/':
printf("%d / %d = %d",a, b, a/b);
break;

default:
printf("Error! operator is not correct");

}
Break statement :

➢ We have use the break statement with the switch
statement.

➢ The function of of break statement is exit form the switch
body.

➢ If it is not written after each case statement, then control
pass to the next statement ,so remaining statement of the
next case statement will also execute even if the case value
do not match and the program will not function properly.

Default keyword :

➢ When this keyword is write then the statement written in
that part get executed if any of the previous case value do
not match.

CHAPTER 3

CPU(2110003)

➢ This keyword is written after the all the cases in the switch
case.

Decision Making with goto statement.

Use: the goto statement in the c programming is used to transfer the
control unconditionally from one part of the program to other part of the
program.

➢ ‘c’ language provide a unconditional branching mechanism
called as goto statement.

➢ The ‘c’ is a structural programming language where use of
goto statement is a dangerous because the use of the goto
statement in the program makes it difficult to understand
and debug.

➢ The syntax of the goto statement is as follow:
➢ Syntax: label:

..................
..................

Goto label;
➢ Here , label is the label to the statement to which goto transfer

control.
➢ Following shows the two possible use of goto statement.

1. forward reference
2. backward reference

Forward jump Backward jump
Goto label;
………….
…………
Label:

Statement;

Label:
Statement;

………
………..
Goto label;

Target statement comes after
the goto

Target statement comes
before the goto.

CHAPTER 3

CPU(2110003)

The ? : operators.
➢ The conditional operator is also known as ternary operator. It is

known as ternary operator because it has three operands.
➢ The general form of ternary operator is follow:

(Condition)? Statement-1: statement-2;
➢ First the condition is checked. If the condition is true then the

statement is followed the? Is executed otherwise the statement
followed the : is executed.

Example:
(a>b)? printf(“a is max”): printf(“b is max”);

➢ Here if the value of a is greater than b then it prints a is max
otherwise it print b is max.

Continue statement :

➢ Continue statement is mostly used inside loops. Whenever it
is encountered inside a loop, control directly jumps to the
beginning of the loop for next iteration, skipping the
execution of statements inside loop’s body for the current
iteration.

Syntax:
continue;

Example:
for (int j=0; j<=8; j++)
{

if (j==4)
{

continue;
}
printf("%d ", j);

}
o/p: 0 1 2 3 5 6 7 8
When j=4, the program encountered a continue statement, which makes it

to jump at the beginning of for loop for next iteration, skipping the statements
for current iteration.

CHAPTER 3

CPU(2110003)

Control Structure for Looping

1. while Loop
2. do…while Loop
3. for Loop

➢ There are two parts of loop.
1. condition: the control statement tests some some

condition .if condition is satisfied then the loop is executed
otherwise the statement follows the loop is executed.

2. body: this statement consists of single or group of
statement.

➢ Depending on where the condition is checked, we can have two
types of loop structure:

1. Entry control loop.
2. exit control loop.

➢ Entry control loop: the condition is written first and then
the body of statement. If the condition is tested before the
body of loop is called Entry control loop. if condition is true
then the body of loop is executed otherwise the loop is not
executed.

➢ Exit control loop:the body of statement is written first
then the condition is written. If The condition condition is
tested after the body of the loop then it is known as exit
control loop. So first body of the loop is executed and then
the condition is checked.

CHAPTER 3

CPU(2110003)

Difference between Entry Controlled & Exit Controlled Loop in C.

Entry Controlled Exit Controlled Loop

Test condition is checked first, and
then loop body will be executed.

Loop body will be executed first,
and then condition is checked.

If Test condition is false, loop body
will not be executed.

If Test condition is false, loop body
will be executed once.

Examples: for loop & while loop. Examples: do while loop

Entry Controlled Loops are used
when checking of test condition is
mandatory before executing loop
body.

Exit Controlled Loop is used when
checking of test condition is
mandatory after executing the
loop body.

CHAPTER 3

CPU(2110003)

1. While loop :

➢ While loop is the entry control loop. Because in while loop first the
condition is checked.

Syntax:
While(condition)
{

Body of the loop;
}

➢ {} is known as body of the loop.
➢ The while loop is executed in the following format.
➢ Here the condition is evaluated first and if it is true then the

statement in the body of the loop is executed.
➢ After executing body , the condition is evaluated again and if it is

true body is executed again. This process is repeated as long as
the condition is true. The control move out once the condition is
false.

Flow chart :

CHAPTER 3

CPU(2110003)

Example:
while(i <= 10)
{

printf("%d\n",i);
i++;

}

2. Do While loop :

➢ Do..while loop is a exit control loop.Because after the executing
the body of the loop the condition is checked .

➢ Syntax:
do
{

Body of the loop
}while(condition);

➢ The do while loop is executed in the following format.

➢ In do..while loop the body is executed first and then the condition
is checked.

➢ If the condition is true the body is executed again and again, as
long as the condition is true.

➢ This ensure that the body of the loop is executed at lease once
even if the condition is false first time.

➢ The control moves out of loop once, the condition become false.

CHAPTER 3

CPU(2110003)

Flow chart :

Example:
do
{

printf("%d\n",i);
i++;

}while(i <= 10);

3.for loop :

Syntax:
For(initialization;condition;increment or decrement)

{
Body of the loop;

}

➢ Initialization: We require one variable which is used to control
the loop, which is called as control variable. The control variable is
initialized in the initialization expression.

CHAPTER 3

CPU(2110003)

➢ Condition: the condition statement is checked the value of the
control variable. If the condition statement is true, the body of the
loop is executed.

➢ Increment/Decrement: The increment/decrement of the control
variable is done in this part. after the incrementing/decrementing
the value of control variable is tested using condition if condition is
true than again the body of loop is executed and this process is
repeated until the condition become false.

Flow chart :

Example:

for(i=1;i<=10;i++)
{

printf("%d\n",i);
}

CHAPTER 3

CPU(2110003)

Nested for loop :

➢ When the loop inside another loop is called nesting of loops.
➢ The nesting can be for any number of levels, for certain problem

the nesting of loop are needed.
The outer loop should not end between the starting of inner loop

Syntax:
for (initialization;condition;increment or decrement)
{

for (initialization;condition;increment or decrement)
{

statement(s);
}

statement(s);
}

Flow chart :

CHAPTER 3

CPU(2110003)

Example :

for (int i=0; i<=3; i++)
{

for (int j=0; j<=i; j++)
{

printf(“*");
}
printf(“\n”);

}

Output :
*
**

 In the above example for(i=0;i<=3;i++)is outer for loop. ’i’ is
the control variable for outer loop and ‘j’ is the control variable
for inner loop.

	3. Control structure in ‘C‘

