
Chapter 2: Fundamentals of C

➢ C is a high level language.
➢ It also has the capability of low level programming. So,

sometimes also referred as middle level Programming
Language.

➢ Best Programming Language for learning procedural
programming approach.

➢ It was developed at the Bell Laboratory, USA (now AT & T),
in 1972.

➢ It is the outcome of Dennis Ritchie and Brian Kernighan.

History of C

➢ C is derived from two early programming languages such
as BCPL (Basic Combined Programming Language) and B
language developed by Ken Thompson.

➢ In 1972 Dennis Ritchie developed a new version of B and
named it as C.

➢ In 1978, Dennis Ritchie and Brian Kernighan jointly
published a detailed description of the C language
document. It is known as K & R C.

➢ Some of Shortcomings of K & R C implementation are
overcome by ANSI (American National Standard Institute)
standards.

Characteristics of C

➢ C is a free-form language.
➢ C is a general purpose & structured programming

language, which helps in development of system software.
➢ It has rich set of operators.
➢ It provides compact representation for expression.
➢ It allows manipulation of internal processor registers.
➢ Portability: any C program can be run in different machine

with no modification.
➢ Rich set of data types and less number of reserved words.
➢ Pointer arithmetic and manipulation.
➢ Ability to extend itself by adding fuctions to its library

Program to print a simple message

#include<stdio.h>
void main()
{

printf(“hello world.”);
}
Output
hello world.

Structure of a C program

preprocessor statement
global declaration;
main()
{
local declaration;
executable statements;
}
user defined function

Preprocessor statements

➢ Begin with # symbol, also called the preprocessor
directives.

➢ Direct the C preprocessor to include header files and also
symbolic constants into C program. Few Statements :

➢ # include < stdio.h > : for standard input/output functions.
➢ # include "Test.h" : for file inclusion of the header files.
➢ # define NULL 0 : for defining symbolic constant, NULL=0

Local declarations::

➢ Variable Declaration: All Variables, array, function used in
C program are declared and may be initialized with their
basic data types.

Global declarations::

➢ Variable or function whose existence is known in main()
function and other user defined function, are called the
global variable.

➢ Its declaration is known as global declarations.
➢ Execution of C program starts with main().

➢ Statements: the instruction to the computer to perform
some specific task. They may be:

1. Arithmetic Statements.
2. Input/output Statements.
3. Control Statements.
4. Other Statements.
➢ Comments: explanatory notes on some instruction, which

are not executed and enclosed with in /* & */

Execution of C Program

Compiling and executing a C program
➢ Compiling a C program means translating it into object

code. Compiler does that for C programs.
➢ Various tools are available which gives the facility of

writing, editing, debugging and executing C language
program.

➢ This type of environment is known as Integrated
Development Environment (IDE).

➢ Examples : Turbo C, Borland C/C++, ANSI C and many
more.

➢ There are basically five steps in the successful execution
of a

program:
1. Creating a program file (Source File).
2. Saving the program (with .c as extension).
3. Compilation.
4. Linking system library function.
5. Running (executing) the program.

Programming style

➢ Programming style is a set of rules or guidelines used
when writing the source code for a computer program.

➢ It is often claimed that following a particular programming
style will help programmers to read and understand
source code conforming to the style, and help to avoid
introducing errors.

➢ A classic work on the subject was The Elements of
Programming Style, written in the 1970s, and illustrated
with examples from the Fortran and PL/I languages
prevalent at the time.

➢ The programming style used in a particular program may
be derived from the coding conventions of a company or
other computing organization, as well as the preferences
of the author of the code.

➢ Programming styles are often designed for a
specific programming language (or language family): style
considered good in C source code may not be appropriate
for BASIC source code, and so on. However, some rules
are commonly applied to many languages.

Chapter 3: Data types in C
C character set :
Whenever one write any C program then it consists of different
statements. Each C Program is set of statements and each
statement is set of different c programming lexims. In C
Programming each and every character is considered as single
lexim. i.e [Basic Lexical Element]
Character Set Consists Of –

Types Character Set

Lowercase Letters a-z
Uppercase Letters A to Z
Digits 0-9
Special Characters !@#$%^&*
White Spaces Tab Or New line Or Space

Valid C Characters : Special Characters are listed
below –

Symbol Meaning

~ Tilde
! Exclamation mark
Number sign
$ Dollar sign
% Percent sign
^ Caret
& Ampersand
* Asterisk

) Right parenthesis
(Left parenthesis
__ Underscore

+ Plus sign
| Vertical bar
\ Backslash
` Apostrophe
– Minus sign
= Equal to sign
{ Left brace
} Right brace
[Left bracket
] Right bracket
: Colon
” Quotation mark

; Semicolon
< Opening angle bracket
> Closing angle bracket
? Question mark
, Comma

Trigraph characters:
➢ Some of the characters like {}, [], \, |, ~ and ^ are

missing in the above keyboard. Hence practically it may
not be possible to write a C program using this keyboard.

➢ To solve this problem C suggested to use combination of 3
characters to produce a single character called trigraph
character.

➢ A trigraph is a sequence of three characters, the first two
of which are question marks

➢ C supports the following 9 trigraph characters.
Trigraph
sequence

Equal
character

??= #

??([

??)]

??/ \

??< {

??> }

??! |

??’ ^

??- ~

C Tokens Chart:

➢ In C Programming punctuation,individual
words,characters etc are called tokens.

➢ Tokens are basic building blocks of C Programming

Token Example :

No Token Type Example 1 Example 2

1 Keyword do while

2 Constants number sum

3 Identifier -76 89

4 String “HTF” “PRIT”

5 Special Symbol * @

6 Operators ++ /

Basic Building Blocks and Definition :

Token Meaning

Keywor
d

A variable is a meaningful name of
data storage location in computer
memory. When using a variable
you refer to memory address of
computer

Constan
t

Constants are expressions with a
fixed value

Identifie
r

The term identifier is usually used
for variable names

String Sequence of characters

Special
Symbol

Symbols other than the Alphabets
and Digits and white-spaces

Operato
rs

A symbol that represent a specific
mathematical or non mathematical
action

Keywords in C Programming Language :

1. Keywords are those words whose meaning is already
defined by Compiler

2. Cannot be used as Variable Name
3. There are 32 Keywords in C
4. C Keywords are also called as Reserved words .

32 Keywords in C Programming Language

auto double int struct

break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Constant:

Constant in C means the content whose value does not change
at the time of execution of a program.
Definition:

Constant means “Whose value cannot be changed“

Explanation :

 Initially 5 is Stored in memory location and name x is
given to it

 After We are assigning the new value (3) to the same
memory location

 This would Overwrite the earlier value 5 since memory
location can hold only one value at a time

 The value of ‘3’,’5′ do not change ,so they are constants
 In Short the ‘Values of Constant Does not Change‘.

Different Types of C Constants :

Constant Type of Value Stored

Integer
Constant

Constant which stores integer
value

Floating
Constant

Constant which stores float
value

Character
Constant

Constant which stores
character value

String
Constant

Constant which stores string
value

Declare Constant in C :

Declare constant of type integer then following two ways to
declare it –

const int a = 1;

int const a = 1;

above declaration is bit confusing but no need to worry, We can
start reading these variables from right to left. i.e

Declaration Explanation
const int a
= 1;

read as “a is an integer which is
constant”

int const a
= 1; read as “a is a constant integer”

Real constants in c:
 A real constant must have at least one digit
 It must have a decimal point
 It could be either positive or negative
 If no sign precedes an integer constant, it is assumed to be

positive.
 No commas or blanks are allowed within a real constant.
Single Character Constant :

1. Character Constant Can hold Single character at a time.
2. Contains Single Character Closed within a pair of Single

Quote Marks
3. Single Character is smallest Character Data Type in C.
4. Integer Representation : Character Constant have Integer

Value known as ‘ASCII’ value
5. It is Possible to Perform Arithmetic Operations on

Character Constants

Examples are:

1. ‘a’
2. ‘1’
3. ‘#’
4. ‘<‘
5. ‘X’

Way 1: Declaring Single Variable

char variable_name;

Way 2: Declaring Multiple Variables

char var1,var2,var3;

Way 3: Declaring & Initializing

char var1 = 'A',var2,var3;

Format Specifier for Character Variable :
➢ “%c” is used as format specifier for character inside C.
➢ However we can also use “%d” as format specifier

because “Each Character have its equivalent intergervalue
known as ASCII Value. “

Using Format Specifier to Print Character Variable :

Sample 1:

printf("%d",'a'); //Output : 97

Sample 2:

printf("%c",'97'); //Output : a

These two Represent the same Result
Example 1 : Creating Variable and Displaying Character
Data

#include<stdio.h>
int main()
{
char cvar = 'A';
printf("Character is : %c",cvar);
return(0);
}

Output :

Character : A

String Constant in C Programming Language :

1. String is “Sequence of Characters“.
2. String Constant is written in Pair of Double Quotes.
3. String is declared as Array of Characters.
4. In C , String data type is not available.
5. Single Character String Does not have Equivalent Integer

Value i.e ASCII Value

Different Constant Values Contained inside String :

String with Single Character

"a"

String With Multiple Characters

"Ali"

String With Digits

"123"

String With Blanks

"How are You"

Note :

1] 'A' is not Equal to "A"
2] 'A' ==> Requires 1 byte Memory
3] "A" ==> Requires 2 byte Memory

Summary :

Example Meaning

“a” String with Single Character

“Ali” String With Multiple
Characters

“123? String With Digits

“How are You” String With Blanks

Backslash character constants in c:

➢ There are some characters which have special meaning in
C language.

➢ They should be preceded by backslash symbol to make
use of special function of them.

➢ Given below is the list of special characters and their
purpose.

Backslash_char
acter Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\” Double quote

\’ Single quote

\\ Backslash

\v Vertical tab

\a Alert or bell

\? Question mark

\N
Octal constant (N is
an octal constant)

\XN

Hexadecimal
constant (N –
hex.dcml cnst)

Variables :
Variable in C Programming is also called as container to store
the data. Variable name may have different data types to
identify the type of value stored. Suppose we declare variable
of type integer then it can store only integer values. Variable is
considered as one of the building block of C
Programming which is also called as identifier.
Rules for naming c variable:
1. Variable name must begin with letter or underscore.
2. Variables are case sensitive
3. They can be constructed with digits, letters.
4. No special symbols are allowed other than underscore.
5. sum, height, _value are some examples for variable name

Data Types

http://www.c4learn.com/c-programming/c-tokens-keywords-identifiers/
http://www.c4learn.com/c-programming/c-tokens-keywords-identifiers/

The C language is very rich in its data types. The variety of
data types available allows the programmer to select an
appropriate type according to the application or machine’s
requirement. Data types are an extensive system used for
declaring variables and functions of different types.

There are three classes of data types:

 Primary (fundamental) data types
 Derived Data types
 User Defined data types

Primary Data Types

Primary data types can be classified into basic and built-in
types. These data types are the most basic building blocks of
any programming language and numerous composite data
types are constructed using them.

Some primary data types are

Integer Types:

This data type as the name suggests, is used to hold only
integer values. Generally, an integer stores values in a range
limited from -32768 to 32767. A signed integer uses one bit for
sign and 15 bits for the magnitude of a number. The integer
has three classes of storage both signed and unsigned. These
are classified on the basis of range of values held by them:

 Short integer: -128 to 127
 Integer: -32768 to +32767
 Long Integer: -2,147,483,648 to 2,147,483,647

Syntax

short i=value;

int i=value;

long int i=value;

int i=3;

long int i =340000

short i=2;

Floating Point Types:

This data type stores real numbers in 32 bits, with 6 digits of
precision. The keyword ‘float’ defines the floating-point data
type. The double type is used when more accurate data is
required. When more accurate data is required, the double
type is used. Double type uses 64 bits giving a precision of 14
digits. Double type precision is more than the float type. Long
double further extends the precision it uses by 80 bits.

Void Types:

This data type has no values and usually specifies function
type. The void type function does not return any values. It can
also play the role of generic type, which means it can
represent any standard type.

Syntax:

public void display()

Character Types:

A single character in C is defined as character (char) type data.
They are usually stored in 8 bits of storage and the character
can be signed and unsigned. Range of characters can be from
-128 to 127 signed and 0 to 255 under unsigned.

Syntax

char ch=’a’

User-Defined Data Types:

C supports the features “typedef” that allows users to define
the identifier which would represent an existing data type. This
defined data type can then be used to declare variables:

Syntax:

typedef int numbers;

numbers num1,num2;

In this example, num1 and num2 are declared as int variables.
The main advantage of user defined data type is that it
increases the program’s readability.

Another type is enumerated type. This is also a user defined
data type

Syntax:

enum identifier {value1,value2, value 3,…}

“Enum” is the keyword and “identifier” is the user defined
data type that is used to declare the variables. It can have any
value enclosed within the curly braces. For example:

enum day {January, February,March,April,..};

enum day month_st,month_end;

The compiler automatically assigns integer digits beginning
from 0 to all the enumeration constants. For example,
“January ” will have value 0 assigned, “February” value 2
assigned and so on. You can also explicitly assign the
enumeration constants.

Derived Data Type:

These data types are formed by a combination of two or more
primary data types. They have extended the scope of C
language. The most common are pointers, arrays, union and
structures.

DECLARING & INITIALIZING C VARIABLE:
 Variables should be declared in the C program before to use.
 Memory space is not allocated for a variable while

declaration. It happens only on variable definition.
 Variable initialization means assigning a value to the

variable.
Type Syntax

Variable
declaration

data_type
variable_name;
Example: int x, y, z; char
flat, ch;

Variable
initialization

data_type variable_name
= value;
Example: int x = 50, y =
30; char flag = ‘x’,
ch=’l’;

Symbolic constant in C Language:

A symbolic constant is name that substitute for a sequence of
character that cannot be changed. The character may
represent a numeric constant, a character constant, or a string.
When the program is compiled, each occurrence of a symbolic
constant is replaced by its corresponding character sequence.
They are usually defined at the beginning of the program. The
symbolic constants may then appear later in the program in

place of the numeric constants, character constants, etc., that
the symbolic constants represent.

For example a C program consists of the following symbolic
constant definitions.

#define PI 3.141593
#define TRUE 1
#define FALSE 0

#define PI 3.141593 defines a symbolic constant PI whose
value is 3.141593. When the program is preprocessed, all
occurrences of the symbolic constant PI are replaced with the
replacement text 3.141593.
The preprocessor statements begin with a #symbol, and are
not end with semicolon. By convention, preprocessor constants
are written in UPPERCASE.

Example: 1

#include<stdio.h>
#include<conio.h>
#define TRUE 1
#define PI 3.141593

void main()
{
float a;
float b;
float c;
float d=PI;
clrscr();
if(TRUE)

{
a=100;
b=a*10;
c=b-a;
}

printf("\na=%f\nb=%f\nc=%f\nPI=%f",a,b,c,d);

getch();
}

Declaring variable as constant
When the const qualifier is used, the declared variable must be
initialized at declaration. It is then not allowed to be changed.
While the idea of a variable that never changes may not seem
useful, there are good reasons to use const. For one thing,
many compilers can perform some small optimizations on data
when it knows that data will never change. For example, if you
need the value of π in your calculations, you can declare a
const variable of pi, so a program or another function written
by someone else cannot change the value of pi.
Note that a Standard conforming compiler must issue a warning
if an attempt is made to change a const variable - but after
doing so the compiler is free to ignore the const qualifier.

Volatile
Volatile is a special type of modifier which informs the
compiler that the value of the variable may be changed by
external entities other than the program itself. This is
necessary for certain programs compiled with optimizations – if
a variable were not defined volatile then the compiler may
assume that certain operations involving the variable are safe
to optimize away when in fact they aren't. volatile is
particularly relevant when working with embedded systems
(where a program may not have complete control of a variable)
and multi-threaded applications.
Overflow and underflow of data in 'c' language
Note:
The size of short is 2 bytes any where (maximum size of short
is 2bytes)
The size of int is 2 bytes in some compilers and 4bytes in other
compilers (minimum size of int is 2bytes)
The size of long double is 10 bytes in some compilers and
12bytes in other compilers

Various forms in declaring variables:
➢ signed short int x;
➢ short signed int x;
➢ short int x;
➢ signed int x;
➢ int x;
➢ short x;
➢ signed x;
➢ long signed int x;
➢ signed long int x;
➢ long int x;
➢ long x;
➢ unsigned short int x;
➢ short unsigned int x;
➢ unsigned int x;
➢ unsigned x;

Chapter 4: Operators and their Hierarchy

➢ The symbols which are used to perform logical and
mathematical operations in a C program are called C
operators.

➢ These C operators join individual constants and variables
to form expressions.

➢ Operators, functions, constants and variables are
combined together to form expressions.

➢ Consider the expression A + B * 5. where, +, * are
operators, A, B are variables, 5 is constant and A + B * 5
is an expression.

➢ Operators in C programming
➢ Arithmetic Operators
➢ Increment and Decrement Operators

https://www.programiz.com/c-programming/c-operators
https://www.programiz.com/c-programming/c-operators

➢ Assignment Operators
➢ Relational Operators
➢ Logical Operators
➢ Conditional Operators
➢ Bitwise Operators
➢ Special Operators

Arithmetic Operators

 An arithmetic operator performs mathematical operations
such as addition, subtraction and multiplication on
numerical values (constants and variables).

Operat
or

Meaning of Operator

+ addition or unary plus
- subtraction or unary minus
* Multiplication
/ division
% remainder after division(modulo

division)
 Example #1: Arithmetic Operators

// C Program to demonstrate the working of arithmetic
operators
#include <stdio.h>
int main()
{

int a = 9,b = 4, c;
c = a+b;
printf("a+b = %d \n",c);
c = a-b;
printf("a-b = %d \n",c);
c = a*b;
printf("a*b = %d \n",c);
c=a/b;
printf("a/b = %d \n",c);
c=a%b;

https://www.programiz.com/c-programming/c-operators
https://www.programiz.com/c-programming/c-operators
https://www.programiz.com/c-programming/c-operators
https://www.programiz.com/c-programming/c-operators
https://www.programiz.com/c-programming/c-operators
https://www.programiz.com/c-programming/c-operators

printf("Remainder when a divided by b = %d \n",c);
return 0;

}
Output
a+b = 13
a-b = 5
a*b = 36
a/b = 2

Remainder when a divided by b=1 computes the remainder.
When a = 9 is divided by b = 4, the remainder is 1. The %
operator can only be used with integers.

Suppose a = 5.0, b = 2.0, c = 5 and d = 2. Then in C
programming,

a/b = 2.5 // Because both operands are floating-point variables
a/d = 2.5 // Because one operand is floating-point variable
c/b = 2.5 // Because one operand is floating-point variable
c/d = 2 // Because both operands are integers

Increment and decrement operators

C programming has two operators increment ++ and
decrement -- to change the value of an operand (constant or
variable) by 1.
Increment ++ increases the value by 1 whereas decrement --
decreases the value by 1. These two operators are unary
operators, meaning they only operate on a single operand.

Example #2: Increment and Decrement Operators
// C Program to demonstrate the working of increment and
decrement operators
#include <stdio.h>
int main()
{

int a = 10, b = 100;

float c = 10.5, d = 100.5;
printf("++a = %d \n", ++a);
printf("--b = %d \n", --b);
printf("++c = %f \n", ++c);
printf("--d = %f \n", --d);
return 0;

}

Output
++a = 11
--b = 99
++c = 11.500000
++d = 99.500000
Here, the operators ++ and -- are used as prefix. These two
operators can also be used as postfix like a++ and a—
Suppose, a = 5 then,
++a; //a becomes 6
a++; //a becomes 7
--a; //a becomes 6
a--; //a becomes 5

Important difference should know when these two operators
are used as prefix and postfix.

Assignment Operators
An assignment operator is used for assigning a value to a
variable. The most common assignment operator is =

Operat
or

Examp
le

Same
as

= a = b a = b
+= a +=

b
a =
a+b

-= a -= b a = a-
b

*= a *= b a =

a*b
/= a /= b a =

a/b
%= a %=

b
a =
a%b

Example #3: Assignment Operators
// C Program to demonstrate the working of assignment
operators
#include <stdio.h>
int main()
{

int a = 5, c;
c = a;
printf("c = %d \n", c);
c += a; // c = c+a
printf("c = %d \n", c);
c -= a; // c = c-a
printf("c = %d \n", c);
c *= a; // c = c*a
printf("c = %d \n", c);
c /= a; // c = c/a
printf("c = %d \n", c);
c %= a; // c = c%a
printf("c = %d \n", c);
return 0;

}

Output
c = 5
c = 10
c = 5
c = 25
c = 5
c = 0

Relational Operators

A relational operator checks the relationship between two
operands. If the relation is true, it returns 1; if the relation is
false, it returns value 0.

Relational operators are used in decision making and loops.
Operat
or

Meaning of
Operator

Example

== Equal to 5 == 3
returns 0

> Greater than 5 > 3
returns 1

< Less than 5 < 3
returns 0

!= Not equal to 5 != 3
returns 1

>= Greater than or
equal to

5 >= 3
returns 1

<= Less than or equal
to

5 <= 3
return 0

Example #4: Relational Operators
// C Program to demonstrate the working of arithmetic
operators
#include <stdio.h>
int main()
{

int a = 5, b = 5, c = 10;
printf("%d == %d = %d \n", a, b, a == b); // true
printf("%d == %d = %d \n", a, c, a == c); // false
printf("%d > %d = %d \n", a, b, a > b); //false
printf("%d > %d = %d \n", a, c, a > c); //false
printf("%d < %d = %d \n", a, b, a < b); //false
printf("%d < %d = %d \n", a, c, a < c); //true
printf("%d != %d = %d \n", a, b, a != b); //false
printf("%d != %d = %d \n", a, c, a != c); //true
printf("%d >= %d = %d \n", a, b, a >= b); //true
printf("%d >= %d = %d \n", a, c, a >= c); //false
printf("%d <= %d = %d \n", a, b, a <= b); //true
printf("%d <= %d = %d \n", a, c, a <= c); //true

return 0;
}

Output
5 == 5 = 1
5 == 10 = 0
5 > 5 = 0
5 > 10 = 0
5 < 5 = 0
5 < 10 = 1
5 != 5 = 0
5 != 10 = 1
5 >= 5 = 1
5 >= 10 = 0
5 <= 5 = 1
5 <= 10 = 1

Logical Operators

An expression containing logical operator returns either 0 or 1
depending upon whether expression results true or false.
Logical operators are commonly used in decision making in C
programming.
Operat
or

Meaning of Operator Example

&& Logial AND. True only
if all operands are
true

If c = 5 and d = 2 then,
expression ((c == 5) && (d >
5))equals to 0.

|| Logical OR. True only
if either one operand
is true

If c = 5 and d = 2 then,
expression ((c == 5) || (d >
5))equals to 1.

! Logical NOT. True only
if the operand is 0

If c = 5 then, expression ! (c
== 5) equals to 0.

Example #5: Logical Operators
// C Program to demonstrate the working of logical operators

#include <stdio.h>
int main()
{

int a = 5, b = 5, c = 10, result;
result = (a = b) && (c > b);
printf("(a = b) && (c > b) equals to %d \n", result);
result = (a = b) && (c < b);
printf("(a = b) && (c < b) equals to %d \n", result);

result = (a = b) || (c < b);
printf("(a = b) || (c < b) equals to %d \n", result);
result = (a != b) || (c < b);
printf("(a != b) || (c < b) equals to %d \n", result);
result = !(a != b);
printf("!(a == b) equals to %d \n", result);
result = !(a == b);
printf("!(a == b) equals to %d \n", result);
return 0;

}
Output
(a = b) && (c > b) equals to 1
(a = b) && (c < b) equals to 0
(a = b) || (c < b) equals to 1
(a != b) || (c < b) equals to 0
!(a != b) equals to 1
!(a == b) equals to 0

Explanation of logical operator program
(a = b) && (c > 5) evaluates to 1 because both operands (a =
b) and (c > b) is 1 (true).
(a = b) && (c < b) evaluates to 0 because operand (c < b) is 0
(false).
(a = b) || (c < b) evaluates to 1 because (a = b) is 1 (true).
(a != b) || (c < b) evaluates to 0 because both operand (a !=
b) and (c < b) are 0 (false).
!(a != b) evaluates to 1 because operand (a != b) is 0 (false).
Hence, !(a != b) is 1 (true).

!(a == b) evaluates to 0 because (a == b) is 1 (true).
Hence, !(a == b)is 0 (false).

Bitwise Operators

During computation, mathematical operations like: addition,
subtraction, addition and division are converted to bit-level
which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-
level operations.

Operat
ors

Meaning of
operators

& Bitwise AND
| Bitwise OR
^ Bitwise exclusive

OR
~ Bitwise

complement
<< Shift left
>> Shift right

Other Operators

Comma Operator

Comma operators are used to link related expressions together.
For example:
int a, c = 5, d;
The sizeof operator
The sizeof is an unary operator which returns the size of data
(constant, variables, array, structure etc).
Example #6: sizeof Operator
#include <stdio.h>
int main()

{
int a, e[10];
float b;
double c;
char d;
printf("Size of int=%lu bytes\n",sizeof(a));
printf("Size of float=%lu bytes\n",sizeof(b));
printf("Size of double=%lu bytes\n",sizeof(c));
printf("Size of char=%lu byte\n",sizeof(d));
printf("Size of integer type array having 10 elements = %lu

bytes\n", sizeof(e));
return 0;

}

Output
Size of int = 4 bytes
Size of float = 4 bytes
Size of double = 8 bytes
Size of char = 1 byte
Size of integer type array having 10 elements = 40 bytes

C Ternary Operator (?:)

A conditional operator is a ternary operator, that is, it works on
3 operands.
Conditional Operator Syntax
conditionalExpression ? expression1 : expression2
The conditional operator works as follows:
The first expression conditionalExpression is evaluated at first.
This expression evaluates to 1 if it's and evaluates to 0 if it's
false.
If conditionalExpression is true, expression1 is evaluated.
If conditionalExpression is false, expression2 is evaluated.

Example #7: C conditional Operator

#include <stdio.h>
int main(){

char February;
int days;
printf("If this year is leap year, enter 1. If not enter any

integer: ");
scanf("%c",&February);
// If test condition (February == 'l') is true, days equal to 29.
// If test condition (February =='l') is false, days equal to 28.
days = (February == '1') ? 29 : 28;
printf("Number of days in February = %d",days);
return 0;

}

Output
If this year is leap year, enter 1. If not enter any integer: 1
Number of days in February = 29

C Type Conversion – Implicit & Explicit Type Conversion
in C

When variables and constants of different types are combined
in an expression then they are converted to same data type.
The process of converting one predefined type into another is
called type conversion.
Type conversion in c can be classified into the following two
types:
Implicit Type Conversion

When the type conversion is performed automatically by the
compiler without programmers intervention, such type of
conversion is known as implicit type conversion or type
promotion.

http://clanguagebasics.com/c-language-tutorial/c-type-conversion-implicit-explicit-type-conversion-in-c/
http://clanguagebasics.com/c-language-tutorial/c-type-conversion-implicit-explicit-type-conversion-in-c/

The compiler converts all operands into the data type of the
largest operand.
The sequence of rules that are applied while evaluating
expressions are given below:
All short and char are automatically converted to int, then,
If either of the operand is of type long double, then others will
be converted to long double and result will be long double.
Else, if either of the operand is double, then others are
converted to double.
Else, if either of the operand is float, then others are converted
to float.
Else, if either of the operand is unsigned long int, then others
will be converted to unsigned long int.
Else, if one of the operand is long int, and the other is unsigned
int, then
if a long int can represent all values of an unsigned int, the
unsigned int is converted to long int.
otherwise, both operands are converted to unsigned long int.
Else, if either operand is long int then other will be converted to
long int.
Else, if either operand is unsigned int then others will be
converted to unsigned int.
It should be noted that the final result of expression is
converted to type of variable on left side of assignment
operator before assigning value to it.
Also, conversion of float to int causes truncation of fractional
part, conversion of double to float causes rounding of digits and
the conversion of long int to int causes dropping of excess
higher order bits.

Explicit Type Conversion

The type conversion performed by the programmer by posing
the data type of the expression of specific type is known as
explicit type conversion.
The explicit type conversion is also known as type casting.
Type casting in c is done in the following form:
(data_type)expression;
where, data_type is any valid c data type, and expression may
be constant, variable or expression.
For example,
1 x=(int)a+b*d;
The following rules have to be followed while converting the
expression from one type to another to avoid the loss of
information:
All integer types to be converted to float.
All float types to be converted to double.
All character types to be converted to integer.

C Operator Precedence Table
This page lists C operators in order of precedence (highest to
lowest). Their associativity indicates in what order operators of
equal precedence in an expression are applied.

Operator Description Associativity

()
[]
.
->
++ --

Parentheses (function call) (see
Note 1)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement (see
Note 2)

left-to-right

++ --
+ -
! ~
(type)
*
&
sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise
complement
Cast (convert value to temporary
value of type)
Dereference
Address (of operand)
Determine size in bytes on this
implementation

right-to-left

* / % Multiplication/division/modulus left-to-right

+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <=
> >=

Relational less than/less than or
equal to
Relational greater than/greater
than or equal to

left-to-right

== != Relational is equal to/is not equal
to

left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

| | Logical OR left-to-right

? : Ternary conditional right-to-left

=
+= -=
*= /=

Assignment
Addition/subtraction assignment
Multiplication/division assignment

right-to-left

%= &=
^= |=
<<= >
>=

Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR
assignment
Bitwise shift left/right assignment

, Comma (separate expressions) left-to-right

Note 1:Parentheses are also used to group sub-
expressions to force a different precedence; such
parenthetical expressions can be nested and are
evaluated from inner to outer.
Note 2:Postfix increment/decrement have high
precedence, but the actual increment or decrement of
the operand is delayed (to be accomplished sometime
before the statement completes execution). So in the
statement y = x * z++; the current value of z is used to
evaluate the expression (i.e., z++ evaluates to z)
and z only incremented after all else is done.
See postinc.cfor another example.

http://www.difranco.net/compsci/postinc.c

Chapter 5: Input/ Output functions
Introduction

C programming has several in-built library functions to perform
input and output tasks.
Two commonly used functions for I/O (Input/Output) are printf()
and scanf().
The scanf() function reads formatted input from standard input
(keyboard) whereas the printf() function sends formatted
output to the standard output (screen).
The printf() is a library function to send formatted output to the
screen. The printf() function is declared in "stdio.h" header file.
stdio.h is a header file (standard input output header file)
and #include is a preprocessor directive to paste the code from
the header file when necessary. When the compiler
encounters printf() function and doesn't find stdio.h header file,
compiler shows error.
Reading character

Format string %c is used in case of character types.
When a character is entered in the above program, the
character itself is not stored. Instead, a numeric value(ASCII
value) is stored.
And when displayed that value using "%c" text format, the
entered character is displayed.
Example #: C ASCII Code
#include <stdio.h>
int main()
{

https://www.programiz.com/c-programming/library-function

char chr;
printf("Enter a character: ");
scanf("%c",&chr); // When %c text format is used,

character is displayed in case of character types
printf("You entered %c.\n",chr); // When %d text format is

used, integer is displayed in case of character types
printf("ASCII value of %c is %d.", chr, chr);
return 0;

}

Output
Enter a character: g
You entered g.
ASCII value of g is 103.
The ASCII value of character 'g' is 103. When, 'g' is entered,
103 is stored in variable var1 instead of g.

Display a character’s ASCII code of that character. This is
shown by following example.
Example #6: C ASCII Code
#include <stdio.h>
int main()
{

int chr = 69;
printf("Character having ASCII value 69 is %c.",chr);
return 0;

}
Output
Character having ASCII value 69 is E.

getchar() & putchar() functions

The getchar() function reads a character from the terminal and
returns it as an integer. This function reads only single
character at a time. You can use this method in the loop in case
you want to read more than one characters.
The putchar() function prints the character passed to it on the

screen and returns the same character. This function puts only
single character at a time. In case you want to display more
than one characters, use putchar() method in the loop.
#include <stdio.h>
void main()
{
int c;
printf("Enter a character");
c=getchar();
putchar(c);
getch();
}
When compiled the above code will ask to enter a value. Enter
the value, it will display the value you have entered.

gets() & puts() functions

The gets() function reads a line from stdin into the buffer
pointed to by s until either a terminating newline or EOF (end of
file). The puts() function writes the string s and a trailing
newline to stdout.

#include<stdio.h>
void main()
{
char str[100];
printf("Enter a string");
gets(str);
puts(str);
getch();
}
When you will compile the above code,it will ask you to enter a
string. When you will enter the string, it will display the value
you have entered.
Below are functions applied on characters using <ctype.h>
library function.

Functio
ns Description

isalpha(
)

checks whether character is
alphabetic

isdigit() checks whether character is digit

isalnum
()

Checks whether character is
alphanumeric

isspace(
) Checks whether character is space

islower(
)

Checks whether character is lower
case

isupper(
)

Checks whether character is upper
case

isdigit()
Checks whether character is
hexadecimal

iscntrl()
Checks whether character is a control
character

isprint()
Checks whether character is a
printable character

ispunct(
)

Checks whether character is a
punctuation

isgraph(
)

Checks whether character is a
graphical character

http://fresh2refresh.com/c/c-int-char-validation/c-isalnum-function/

tolower(
)

Checks whether character is
alphabetic & converts to lower case

toupper
()

Checks whether character is
alphabetic & converts to upper case

Output
Enter String: hahahaha
The input was: aaaa
%[aeiou] causes scanf to input only character listed in [].
Inputting/Outputting Integer Numbers:

Format : % w d

w-integer number, d-data type,

Example #: C Integer Output
#include <stdio.h>
int main()
{

int testInteger = 5;
printf("Number = %d", testInteger);

return 0;
}
Output
Number = 5
Inside the quotation of printf() function, there is a format
string "%d" (for integer). If the format string matches the
argument (testInteger in this case), it is displayed on the
screen.
Example #3: C Integer Input/Output
#include <stdio.h>
int main()
{

int testInteger;
printf("Enter an integer: ");
scanf("%d",&testInteger);
printf("Number = %d",testInteger);
return 0;

}
Output
Enter an integer: 4
Number = 4
Inputting/outputting Real Numbers:

Format : % w sd

w-integer number, d-data type, s-points after decimal

Example #: C Floats Input/Output
#include <stdio.h>
int main()
{

float f;
printf("Enter a number: ");

// %f format string is used in case of floats
scanf("%f",&f);
printf("Value = %f", f);
return 0;

}
Output
Enter a number: 23.45
Value = 23.450000
The format string "%f" is used to read and display formatted in
case of floats.

More on Input/Output of floats and Integers
Integer and floats can be displayed in different formats in C
programming.
Example #: I/O of Floats and Integers
#include <stdio.h>
int main()
{

int integer = 9876;
float decimal = 987.6543; // Prints the number right

justified within 6 columns
printf("4 digit integer right justified to 6 column: %6d\n",

integer); // Tries to print number right justified to 3 digits but
the number is not right adjusted because there are only 4
numbers

printf("4 digit integer right justified to 3 column: %3d\n",
integer); // Rounds to two digit places

printf("Floating point number rounded to 2 digits:
%.2f\n",decimal); // Rounds to 0 digit places

printf("Floating point number rounded to 0 digits:
%.f\n",987.6543); // Prints the number in exponential
notation(scientific notation)

printf("Floating point number in exponential form:
%e\n",987.6543);

return 0;
}
Output
4 digit integer right justified to 6 column: 9876
4 digit integer right justified to 3 column: 9876
Floating point number rounded to 2 digits: 987.65
Floating point number rounded to 0 digits: 988
Floating point number in exponential form: 9.876543e+02

	Trigraph characters:
	Token Example :
	Basic Building Blocks and Definition :
	Definition:
	Explanation :
	Different Types of C Constants :
	Declare Constant in C :
	const int a = 1;
	int const a = 1;
	above declaration is bit confusing but no need to
	Declaration
	Explanation
	const int a = 1;
	read as “a is an integer which is constant”
	int const a = 1;
	read as “a is a constant integer”
	 Real constants in c:
	Format Specifier for Character Variable :
	Using Format Specifier to Print Character Variable
	String Constant in C Programming Language :
	Different Constant Values Contained inside String
	Note :
	Summary :
	Backslash character constants in c:
	Rules for naming c variable:
	DECLARING & INITIALIZING C VARIABLE:

	For example a C program consists of the following
	#define PI 3.141593#define TRUE 1#define FALSE 0
	Example: 1
	Volatile
	Various forms in declaring variables:
	Arithmetic Operators
	Example #1: Arithmetic Operators

