Apache Spark

* Industries are using Hadoop extensively to analyze their
data sets.

* The reason is that Hadoop framework is based on a simple
programming model (MapReduce) and it enables a
computing solution that is scalable, flexible, fault-tolerant
and cost effective.

 The main concern is to maintain speed in processing large
datasets in terms of waiting time between queries and
waiting time to run the program.

Cont...

Spark was introduced by Apache Software Foundation for
speeding up the Hadoop computational computing
software process.

Spark is not a modified version of Hadoop and is not,
really, dependent on Hadoop because it has its own cluster
management.

Hadoop is just one of the ways to implement Spark.

Spark uses Hadoop in two ways - one is storage and
second is processing. Since Spark has its own cluster
management computation, it uses Hadoop for storage
purpose only.

Introduction

 Apache Spark is a lightning-fast cluster computing
technology, designed for fast computation.

It is based on Hadoop MapReduce and it extends the
MapReduce model to efficiently use it for more types of
computations, which includes interactive queries and
stream processing.

* The main feature of Spark is its in-memory cluster
computing that increases the processing speed of an
application.

Cont...

Spark is designed to cover a wide range of workloads such as
batch applications, iterative algorithms, interactive queries and
streaming.

It also reduces the management burden of maintaining separate
tools.

Spark is one of Hadoop’s sub project developed in 2009 in UC
Berkeley’s AMPLab by Matei Zaharia.

[t was Open Sourced in 2010 under a BSD license.

It was donated to Apache software foundation in 2013, and now
Apache Spark has become a top level Apache project from Feb-
2014.

Features of SPARK

Speed:

Spark helps to run an application in Hadoop cluster, up to 100
times faster in memory, and 10 times faster when running on disk. This is
possible by reducing number of read/write operations to disk. It stores
the intermediate processing data in memory.

Supports multiple languages:
Spark provides built-in APIs in Java, Scala, or Python. Therefore,

you can write applications in different languages. Spark comes up with 80
high-level operators for interactive querying.

Advanced Analytics:

Spark not only supports ‘Map’ and ‘reduce’. It also supports SQL
queries, Streaming data, Machine learning (ML), and Graph algorithms.

Spark Built on Hadoop

Standalone

Hadoop 2.x (YARN)

Hadoop V1 (SIMR)

Cont...

Standalone: Spark Standalone deployment means Spark
occupies the place on top of HDFS(Hadoop Distributed File
System) and space is allocated for HDFS, explicitly. Here, Spark
and MapReduce will run side by side to cover all spark jobs on
cluster.

Hadoop Yarn: Hadoop Yarn deployment means, simply, spark
runs on Yarn without any pre-installation or root access
required. It helps to integrate Spark into Hadoop ecosystem or
Hadoop stack. It allows other components to run on top of stack.

Spark in MapReduce (SIMR): Spark in MapReduce is used to
launch spark job in addition to standalone deployment. With
SIMR, user can start Spark and uses its shell without any
administrative access.

SETUP SPARK CLUSTER ON MULTIPLE
MACHINES

Worker Node

Executor | Cache

— —>
Driver Program / ‘/v Task || Task

SparkContext Cluster Manager T
Worker Node 1

\ Executor | Cache

¥ | Task Task

/‘

Hadoop 2.x Architecture

Client
Application

l Resource Manager]

Master Nude| MNameNode]

JL
I

[MNode Manager

1l

Node Manager

5
Ness Application Master

)

[1
[Data Node]
1l

[Application Master

Data Node

2y

i = It

NMode Manager J l Node Manager] [NDC:IE Manager]
[000

000

[Data Node] l Data Node][Data Node J
Mode-1 NMNodeae-n Node-a

Hadoop 2.x High-Level Architecture

Cont...

All Master Nodes and Slave Nodes contains both
MapReduce and HDFS Components.

One Master Node has two components:
— Resource Manager(YARN or MapReduce v2)

— HDFS

It's HDFS component is also knows as NameNode. It's
NameNode is used to store Meta Data.

In Hadoop 2.x, some more Nodes acts as Master Nodes as
shown in the above diagram. Each this 2nd level Master
Node has 3 components:

Cont...

— Node Manager
— Application Master

— Data Node

* Each this 2nd level Master Node again contains one or
more Slave Nodes as shown in the above diagram.

* These Slave Nodes have two components:
— Node Manager

— HDFS

* [t’s HDFS component is also knows as Data Node. It's Data
Node component is used to store actual our application Big
Data. These nodes does not contain Application Master
component.

Hadoop Indetail Architecture

[Client Application]

e Resource Manager
Application
|\ [Scheduler j | zanger I
Master Node[NameNaode
3.
IT 1

Node Manager Node Manager

ster Nodes

Application Master] Application Master

- "
I)
L - !
Data Node Data Node S
t Contamet [Container] Contamer Container]
) J
1l J_ gl
Node Manager] [Node Manager Node Manager] ' N
Data Node) Data Node Data Node
ontalner Containor [Contalner c:muanor (Contalmr [Container I Cx
4 >
Node-1 Nede-10

Hadoop 2.x In-Detail Architecture

Hadoop 2.x Architecture Description

Resource Manager:
Resource Manager is a Per-Cluster Level Component.

Resource Manager is again divided into two components:
— Scheduler

— Application Manager
Resource Manager’s Scheduler is :

— Responsible to scheduler required resources to
Applications (that is Per-Application Master).

— It does only scheduling.

— It does care about monitoring or tracking of those
Applications.

Cont...

Container:

« Each Master Node or Slave Node contains set of Containers.
In this diagram, Main Node's Name Node is not showing
the Containers. However, it also contains a set of
Containers.

* Container is a portion of Memory in HDFS (Either Name
Node or Data Node).

Node Manager:
* Node Manager is a Per-Node Level component.
* [tisresponsible for:
— Managing the life-cycle of the Container.
— Monitoring each Container’s Resources utilization.

Cont...

Application Master:

* Application Master is a per-application level component. It is
responsible for:

— Managing assigned Application Life cycle.

— Itinteracts with both Resource Manager’s Scheduler and Node
Manager

— Itinteracts with Scheduler to acquire required resources.

— Itinteracts with Node Manager to execute assigned tasks and
monitor those task’s status.

Components of Spark

Apache Spark Core

Cont...

Apache Spark Core

Spark Core is the underlying general execution engine for
spark platform that all other functionality is built upon. It provides
In-Memory computing and referencing datasets in external storage
systems.

Spark SQL
Spark SQL is a component on top of Spark Core that

introduces a new data abstraction called Schema RDD, which
provides support for structured and semi-structured data.

Spark Streaming

Spark Streaming leverages Spark Core's fast scheduling
capability to perform streaming analytics. It ingests data in mini-
batches and performs RDD (Resilient Distributed Datasets)
transformations on those mini-batches of data.

Cont...

MLIib (Machine Learning Library)

MLIib is a distributed machine learning framework above
Spark because of the distributed memory-based Spark architecture.
It is, according to benchmarks, done by the MLIib developers
against the Alternating Least Squares (ALS) implementations.
Spark MLIib is nine times as fast as the Hadoop disk-based version
of Apache Mahout (before Mahout gained a Spark interface).

GraphX

GraphX is a distributed graph-processing framework on top
of Spark. It provides an API for expressing graph computation that
can model the user-defined graphs by using Pregel abstraction API.
It also provides an optimized runtime for this abstraction.

SPARK-RDD

Resilient Distributed Datasets (RDD) is a fundamental data
structure of Spark.

[t is an immutable distributed collection of objects.

Each dataset in RDD is divided into logical partitions,
which may be computed on different nodes of the cluster.

RDDs can contain any type of Python, Java, or Scala objects,
including user-defined classes.

Cont...

RDD is a read-only, partitioned collection of records.

RDDs can be created through deterministic operations on either
data on stable storage or other RDDs.

RDD is a fault-tolerant collection of elements that can be
operated on in parallel.

There are two ways to create RDDs:
O Parallelizing an existing collection in your driver program,

U Referencing a dataset in an external storage system, such as a shared file
system, HDFS, HBase, or any data source offering a Hadoop Input Format.

The features of RDDs (decomposing the
name):

* Resilient, i.e. fault-tolerant with the help of RDD Lineage
graph and so able to recompute missing or damaged
partitions due to node failures.

* Distributed with data residing on multiple nodes in
a cluster.

* Dataset is a collection of partitioned data with primitive
values or values of values, e.g. tuples or other objects (that
represent records of the data you work with).

Additional Traits

In-Memory, i.e. data inside RDD is stored in memory as much (size)
and long (time) as possible.

Immutable or Read-Only, i.e. it does not change once created and can
only be transformed using transformations to new RDDs.

Lazy evaluated, i.e. the data inside RDD is not available or transformed
until an action is executed that triggers the execution.

Cacheable, i.e. you can hold all the data in a persistent "storage” like
memory (default and the most preferred) or disk (the least preferred
due to access speed).

Parallel, i.e. process data in parallel.

Typed — RDD records have types, e.g. Long in RDD[Long] or (Int,
String) in RDD[(Int, String)].

Partitioned — records are partitioned (split into logical partitions)
and distributed across nodes in a cluster.

Map Reduce Operations

* Data Sharing is Slow in Map Reduce

Map Reduce is widely adopted for processing and generating
large datasets with a parallel, distributed algorithm on a cluster.

It allows users to write parallel computations, using a set of high-
level operators, without having to worry about work distribution and fault
tolerance.

In most current frameworks, the only way to reuse data between
computations (Ex: between two Map Reduce jobs) is to write it to an
external stable storage system (Ex: HDFS).

Both Iterative and Interactive applications require faster data
sharing across parallel jobs. Data sharing is slow in MapReduce due to
replication, serialization, and disk 10.

[terative Operations on MapReduce

Reuse intermediate results across multiple computations in
multi-stage applications. The following illustration explains how
the current framework works, while doing the iterative
operations on MapReduce. This incurs substantial overheads
due to data replication, disk I/0, and serialization, which makes
the system slow.

Iteration - 1 Iteration - 2
HDFS M1
_____read/
Data on M2
Disk
Inp;.lt from
stable M3

storage

Interactive Operations on MapReduce

* User runs ad-hoc queries on the same subset of data. Each query
will do the disk I/O on the stable storage, which can dominate
application execution time.

* The following illustration explains how the current framework
works while doing the interactive queries on MapReduce.

- ~

HDFS Quarvl I
___ read ! ry | Resultl
SEEN——— _
> Query2 Result2
— r N
Input from Query3 Result3

stable storage s 2

Data Sharing using Spark RDD

Data sharing is slow in MapReduce due to replication,
serialization, and disk I0.

Recognizing this problem, researchers developed a
specialized framework called Apache Spark.

The key idea of spark is Resilient Distributed Datasets
(RDD); it supports in-memory processing computation.

This means, it stores the state of memory as an object
across the jobs and the object is sharable between those
jobs.

Data sharing in memory is 10 to 100 times faster than
network and Disk.

[terative Operations on Spark RDD

* The illustration given below shows the iterative operations on
Spark RDD. It will store intermediate results in a distributed

memory instead of Stable storage (Disk) and make the system
faster.

teration « 1 Iteration - 2 teration - n
HDFS i miR1 | Write ead | MRL \ wiite eee [0 4 MRL \ POP
read , . \write
Data on MR L) MR h MR2 (:;";;;)
Disk |
|,; Eor;n output to
2table MR3 MR3 MRS stable

storage % R S storage

Interactive Operations on Spark RDD

This illustration shows interactive operations on Spark RDD. If
different queries are run on the same set of data repeatedly, this

particular data can be kept in memory for better execution
times.

Queryl
~ . HDFS
read
Data on Distributed Query2 e

Disk | OneTime |
./ Processing

Query3

Apache Spark Installation

Spark is Hadoop’s sub-project. Therefore, it is better to install
Spark into a Linux based system.

Verify Java Installation
Verify Scala Installation
Download Latest Scala
Installing Scala

Extract the Scala tar file
Downloading Apache Spark
Installing Spark

Verifying Spark Installation

CORE Programming

» Spark Core is the base of the whole project.

* [t provides distributed task dispatching, scheduling, and
basic I/0 functionalities. Spark wuses a specialized
fundamental data structure known as RDD (Resilient
Distributed Datasets) that is a logical collection of data
partitioned across machines.

* RDDs can be created in two ways; one is by referencing
datasets in external storage systems and second is by
applying transformations (e.g. map, filter, reducer, join) on
existing RDDs.

Spark Shell

Spark provides an interactive shell: a powerful tool to
analyze data interactively.

[t is available in either Scala or Python language.

Spark’s primary abstraction is a distributed collection of
items called a Resilient Distributed Dataset (RDD).

RDDs can be created from Hadoop Input Formats (such as
HDFS files) or by transforming other RDDs

RDD Transformations

« RDD transformations returns pointer to new RDD and
allows you to create dependencies between RDDs. Each
RDD in dependency chain (String of Dependencies) has a
function for calculating its data and has a pointer
(dependency) to its parent RDD.

* Spark is lazy, so nothing will be executed unless you call
some transformation or action that will trigger job creation
and execution.

m Transformations & Meaning

map (func)
Returns a new distributed dataset, formed by passing each element of the
source through a function func.

2 filter(func)
Returns a new dataset formed by selecting those elements of the source on
which func returns true.

3 flatMap (func)
Similar to map, but each input item can be mapped to 0 or more output
items (so func should return a Seq rather than a single item).

4 intersection(otherDataset)
Returns a new RDD that contains the intersection of elements in the
source dataset and the argument.

5 union(otherDataset)
Returns a new dataset that contains the union of the elements in the
source
dataset and the argument.

m

collect()

Returns all the elements of the dataset as an array at the driver program.
This is usually useful after a filter or other operation that returns a
sufficiently small subset of the data.

2 count()
Returns the number of elements in the dataset.
3 first()
Returns the first element of the dataset(similar to take (1)).
4 take(n)
Returns an array with the first n elements of the dataset.
5 saveAsTextFile(path)

Writes the elements of the dataset as a text file (or set of text files) in a
given directory in the local filesystem, HDFS or any other Hadoop-
supported file system. Spark calls toString on each element to convert it to
a line of text in the file.

