
HDFS

Hadoop File System was developed using distributed file system design. It is run on commodity

hardware. Unlike other distributed systems, HDFS is highly fault tolerant and designed using low-cost

hardware.

HDFS holds very large amount of data and provides easier access. To store such huge data, the files are

stored across multiple machines. These files are stored in redundant fashion to rescue the system from

possible data losses in case of failure. HDFS also makes applications available to parallel processing.

Introduction

Features of HDFS

 It is suitable for the distributed storage and processing.

 Hadoop provides a command interface to interact with HDFS.

 The built-in servers of namenode and datanode help users to easily check the status of cluster.

 Streaming access to file system data.

 HDFS provides file permissions and authentication.

 HDFS Architecture

Given below is the architecture of a Hadoop File System.

HDFS Architecture

HDFS follows the master-slave architecture and it has the following elements.

Namenode

The namenode is the commodity hardware that contains the GNU/Linux operating system and the

namenode software. It is a software that can be run on commodity hardware. The system having the

namenode acts as the master server and it does the following tasks:

 Manages the file system namespace.

 Regulates client’s access to files.

 It also executes file system operations such as renaming, closing, and opening files and

directories.

Datanode

The datanode is a commodity hardware having the GNU/Linux operating system and datanode

software. For every node Commodity hardware/system in a cluster, there will be a datanode. These

nodes manage the data storage of their system.

 Datanodes perform read-write operations on the file systems, as per client request.

 They also perform operations such as block creation, deletion, and replication according to the

instructions of the namenode.

Block

Generally the user data is stored in the files of HDFS. The file in a file system will be divided into one

or more segments and/or stored in individual data nodes. These file segments are called as blocks. In

other words, the minimum amount of data that HDFS can read or write is called a Block. The default

block size is 64MB, but it can be increased as per the need to change in HDFS configuration.

Goals of HDFS

 Fault detection and recovery: Since HDFS includes a large number of commodity hardware,

failure of components is frequent. Therefore HDFS should have mechanisms for quick and

automatic fault detection and recovery.

 Huge datasets: HDFS should have hundreds of nodes per cluster to manage the applications

having huge datasets.

 Hardware at data: A requested task can be done efficiently, when the computation takes place

near the data. Especially where huge datasets are involved, it reduces the network traffic and

increases the throughput.

Installation and Shell

Starting HDFS

Initially you have to format the configured HDFS file system, open namenode HDFS server, and execute

the following command.

$ hadoop namenode -format

After formatting the HDFS, start the distributed file system. The following command will start the

namenode as well as the data nodes as cluster.

$ start-dfs.sh

Listing Files in HDFS

After loading the information in the server, we can find the list of files in a directory, status of a file,

using ‘ls’. Given below is the syntax of ls that you can pass to a directory or a filename as an argument.

$ $HADOOP_HOME/bin/hadoop fs -ls <args>

Inserting Data into HDFS

Assume we have data in the file called file.txt in the local system which is ought to be saved in the hdfs

file system. Follow the steps given below to insert the required file in the Hadoop file system.

Step 1

You have to create an input directory.

$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/input

Step 2

Transfer and store a data file from local systems to the Hadoop file system using the put command.

$ $HADOOP_HOME/bin/hadoop fs -put /home/file.txt /user/input

Step 3

You can verify the file using ls command.

$ $HADOOP_HOME/bin/hadoop fs -ls /user/input

Retrieving Data from HDFS

Assume we have a file in HDFS called outfile. Given below is a simple demonstration for retrieving the

required file from the Hadoop file system.

Step 1

Initially, view the data from HDFS using cat command.

$ $HADOOP_HOME/bin/hadoop fs -cat /user/output/outfile

Step 2

Get the file from HDFS to the local file system using get command.

$ $HADOOP_HOME/bin/hadoop fs -get /user/output/ /home/hadoop_tp/

Shutting Down the HDFS

You can shut down the HDFS by using the following command.

$ stop-dfs.sh

JAVA API

Hadoop’s org.apache.hadoop.fs.FileSystem is generic class to access and manage HDFS files/directories

located in distributed environment. File’s content stored inside datanode with multiple equal large sizes

of blocks (e.g. 64 MB), and namenode keep the information of those blocks and Meta information.

FileSystem read and stream by accessing blocks in sequence order. FileSystem first get blocks

information from NameNode then open, read and close one by one. It opens first blocks once it complete

then close and open next block. HDFS replicate the block to give higher reliability and scalability and if

client is one of the datanode then it tries to access block locally if fail then move to other cluster datanode.

FileSystem uses FSDataOutputStream and FSDataInputStream to write and read the contents in

stream. Hadoop has provided various implementation of FileSystem as described below:

 DistributedFileSystem: To access HDFS File in distributed environment

 LocalFileSystem: To access HDFS file in Local system

 FTPFileSystem: To access HDFS file FTP client

 WebHdfsFileSystem: To access HDFS file over the web

URI and Path:

Hadoop’s URI locate file location in HDFS. It uses hdfs://host: port/location to access file through

FileSystem.

Below code show how to create URI

hdfs://localhost:9000/user/joe/TestFile.txt

URI uri=URI.create (“hdfs://host: port/path”);

Host and post on above uri could be configured in conf/core-site.xml file as below

<property><name>fs.default.name</name><value>hdfs://localhost:9000</value></

property>

Path consist URI and resolve the OS dependency in URI e.g. Windows uses \\path whereas linux uses

//. It also uses to resolve parent child dependency.

It could be created as below

Path path=new Path (uri); //It constitute URI

Configuration

Configuration class passes the Hadoop configuration information to FileSystem. It loads the core-site

and core-default.xml through class loader and keeps Hadoop configuration information such as

fs.defaultFS, fs.default.name etc. You can create the Configuration class as below

Configuration conf = new Configuration ();

You can also set the configuration parameter explicitly as below

conf.set("fs.default.name", “hdfs://localhost:9000”);

FileSystem

Below code describe how to create Hadoop’s FileSystem

public static FileSystem get(Configuration conf)

public static FileSystem get(URI uri, Configuration conf)

public static FileSystem get(URI uri, Configuration conf, String user)

FileSystem uses NameNode to locate the DataNode and then directly access DataNodes block in

sequence order to read the file. FileSystem uses Java IO FileSystem interface mainly DataInputStream

and DataOutputStream for IO operation.

If you are looking to get local filesystem we can directly use getLocal method as mentioned below

public static LocalFileSystem getLocal(Configuration conf)

FSDataInputStream

FSDataInputStream wraps the DataInputStream and implements Seekable, PositionedReadable

interfaces which provide method like getPos(), seek() method to provide Random Access on HDFS file.

FileSystem have open() method which return FSDataInputStream as below:

URI uri = URI.create (“hdfs://host: port/file path”);

Configuration conf = new Configuration ();

FileSystem file = FileSystem.get (uri, conf);

FSDataInputStream in = file.open(new Path(uri));

Above method get FSDataInputStream with default buffer size 4096 byte i.e. 4KB. We can also define

the buffer size while creating Input Stream as below code.

public abstract FSDataInputStream open(Path path, int sizeBuffer)

FSDaraInputStream implements seek (long pos) and getPos () method of Seekable interface.

public interface Seekable {

 void seek(long pos) throws IOException;

 long getPos() throws IOException;

 boolean seekToNewSource(long targetPos) throws IOException;

}

seek() method seek the file to the given offset from the start of the file so that read () will stream from

that location whereas getPos() method will return the current position on the InputStream.

Below sample code uses seek (), getPos () and read() method

FileSystem file = FileSystem.get (uri, conf);

 FSDataInputStream in = file.open(new Path(uri));

 byte[] btbuffer = new byte[5];

 in.seek(5); // sent to 5th position

 Assert.assertEquals(5, in.getPos());

 in.read(btbuffer, 0, 5);//read 5 byte in byte array from offset 0

 System.out.println(new String(btbuffer));// &amp;amp;quot; print

5 character from 5th position

 in.read(10,btbuffer, 0, 5);// print 5 character staring from 10th

position

FSDataInputStream also implements PositionedReadable, which provide read, & readFully method to

read part of file content from seek position as mentioned below

read(long position, byte[] buffer, int offset, int length)

FSDataOutputStream

Filesystem’s create () method return FSDataOutputStream, which use to create new HDFS file or write

the content at the EOF. It doesn’t provide seek because of HDFS limitation to write to content at the

EOF only. It wrap Java IO’s DataOutputStream and add method such as getPos() to get the position of

the file and write() to write the content at the last position.

Below method signature provide FSDataOutputStream:

Create method on FileSystem create file e.g.

public FSDataOutputStream create(Path f) create empty file.

public FSDataOutputStream append(Path f) will append existing file

Create method also pass Progressable interface to track the status during file creation.

public FSDataOutputStream create(Path f, Progressable progress)

FileStatus

As describe below code getStatus() method of FileSystem provide HDFS file’s meta information of HDFS

file

URI uri=URI.create(strURI);

 FileSystem fileSystem=FileSystem.get(uri,conf);

 FileStatus fileStatus=fileSystem.getFileStatus(new Path(uri));

 System.out.println("AccessTime:"+fileStatus.getAccessTime());

 System.out.println("AccessTime:"+fileStatus.getLen());

 System.out.println("AccessTime:"+fileStatus.getModificationTime());

 System.out.println("AccessTime:"+fileStatus.getPath());

If your uri is directory not file then listStatus() will give you array of FileStatus[] as below

public FileStatus[] listStatus(Path f)

Directories

FileSystem provide method public boolean mkdirs (Path f) to create directory and its entire necessary

child directory if not available. It returns true if directory created successfully. This is not mandatory

as whenever you create file it will try to create necessary sub directories.

Delete file

Delete method on FileSystem remove the file/directory permanently

public boolean delete(Path f, boolean recursive) throws IOException

If recursive is true then it will delete a non-empty directory

Hive

Hive Architecture

Installation

The following steps are required for installing Hive on your system. Let us assume the Hive archive is

downloaded onto the /Downloads directory.

Extracting and verifying Hive Archive

The following command is used to verify the download and extract the hive archive:

$ tar zxvf apache-hive-0.14.0-bin.tar.gz

$ ls

On successful download, you get to see the following response:

apache-hive-0.14.0-bin apache-hive-0.14.0-bin.tar.gz

Copying files to /usr/local/hive directory

We need to copy the files from the super user “su -”. The following commands are used to copy the files

from the extracted directory to the /usr/local/hive” directory.

$ su -

passwd:

cd /home/user/Download

mv apache-hive-0.14.0-bin /usr/local/hive

exit

Setting up environment for Hive

You can set up the Hive environment by appending the following lines to ~/.bashrc file:

export HIVE_HOME=/usr/local/hive

export PATH=$PATH:$HIVE_HOME/bin

export CLASSPATH=$CLASSPATH:/usr/local/Hadoop/lib/*:.

export CLASSPATH=$CLASSPATH:/usr/local/hive/lib/*:.

The following command is used to execute ~/.bashrc file.

$ source ~/.bashrc

Configuring Hive

To configure Hive with Hadoop, you need to edit the hive-env.sh file, which is placed in the

$HIVE_HOME/conf directory. The following commands redirect to Hive config folder and copy the

template file:

$ cd $HIVE_HOME/conf

$ cp hive-env.sh.template hive-env.sh

Edit the hive-env.sh file by appending the following line:

export HADOOP_HOME=/usr/local/hadoop

Hive installation is completed successfully. Now you require an

external database server to configure Metastore.

Comparison with Traditional Database

HiveQL

Querying Data

Sorting and Aggregating

Map Reduce Scripts

Joins & Sub queries

	HDFS
	Introduction
	Features of HDFS
	HDFS Architecture
	Namenode
	Datanode

	Block
	Goals of HDFS

	Installation and Shell
	Starting HDFS
	Listing Files in HDFS
	Inserting Data into HDFS
	Retrieving Data from HDFS
	Shutting Down the HDFS

	JAVA API
	URI and Path:
	Configuration
	FileSystem
	FSDataInputStream
	FSDataOutputStream
	FileStatus
	Directories
	Delete file

	Hive
	Hive Architecture
	Installation
	Extracting and verifying Hive Archive
	Copying files to /usr/local/hive directory
	Setting up environment for Hive
	Configuring Hive

	Hive installation is completed successfully. Now you require an external database server to configure Metastore.
	Comparison with Traditional Database
	HiveQL
	Querying Data
	Sorting and Aggregating
	Map Reduce Scripts
	Joins & Sub queries

