
Apache Hadoop 

Hadoop is an Apache open source framework written in java that allows distributed processing of large 

datasets across clusters of computers using simple programming models. A Hadoop frame-worked 

application works in an environment that provides distributed storage and computation across clusters 

of computers. Hadoop is designed to scale up from single server to thousands of machines, each offering 

local computation and storage. 

Hadoop Architecture 

Hadoop framework includes following four modules: 

 Hadoop Common: These are Java libraries and utilities required by other Hadoop modules. These 

libraries provides file system and OS level abstractions and contains the necessary Java files and 

scripts required to start Hadoop. 

 Hadoop YARN: This is a framework for job scheduling and cluster resource management. 

 Hadoop Distributed File System HDFS™HDFS™: A distributed file system that provides high-

throughput access to application data. 

 Hadoop MapReduce: This is YARN-based system for parallel processing of large data sets. 

We can use following diagram to depict these four components available in Hadoop framework. 

 

Since 2012, the term "Hadoop" often refers not just to the base modules mentioned above but also to the 

collection of additional software packages that can be installed on top of or alongside Hadoop, such as 

Apache Pig, Apache Hive, Apache HBase, Apache Spark etc. 

MapReduce 



Hadoop MapReduce is a software framework for easily writing applications which process big amounts 

of data in-parallel on large clusters thousands of nodes thousands of nodes of commodity hardware in a 

reliable, fault-tolerant manner. 

The term MapReduce actually refers to the following two different tasks that Hadoop programs perform: 

 The Map Task: This is the first task, which takes input data and converts it into a set of data, 

where individual elements are broken down into tuples key/value pairs. 

 The Reduce Task: This task takes the output from a map task as input and combines those data 

tuples into a smaller set of tuples. The reduce task is always performed after the map task. 

Typically both the input and the output are stored in a file-system. The framework takes care of 

scheduling tasks, monitoring them and re-executes the failed tasks. 

The MapReduce framework consists of a single master JobTracker and one slave TaskTracker per 

cluster-node. The master is responsible for resource management, tracking resource 

consumption/availability and scheduling the jobs component tasks on the slaves, monitoring them and 

re-executing the failed tasks. The slaves TaskTracker execute the tasks as directed by the master and 

provide task-status information to the master periodically. 

The JobTracker is a single point of failure for the Hadoop MapReduce service which means if JobTracker 

goes down, all running jobs are halted. 

Hadoop Distributed File System 

Hadoop can work directly with any mountable distributed file system such as Local FS, HFTP FS, S3 

FS, and others, but the most common file system used by Hadoop is the Hadoop Distributed File 

System HDFSHDFS. 

The Hadoop Distributed File System HDFSHDFS is based on the Google File System GFSGFS and 

provides a distributed file system that is designed to run on large clusters thousands of computers of 

small computer machines in a reliable, fault-tolerant manner. 

HDFS uses a master/slave architecture where master consists of a single NameNode that manages the 

file system metadata and one or more slave DataNodes that store the actual data. 

A file in an HDFS namespace is split into several blocks and those blocks are stored in a set of 

DataNodes. The NameNode determines the mapping of blocks to the DataNodes. The DataNodes takes 

care of read and write operation with the file system. They also take care of block creation, deletion and 

replication based on instruction given by NameNode. 

HDFS provides a shell like any other file system and a list of commands are available to interact with 

the file system. These shell commands will be covered in a separate chapter along with appropriate 

examples. 

How Does Hadoop Work? 

Stage 1 

A user/application can submit a job to the Hadoop job client for required process by specifying the 

following items: 



1. The location of the input and output files in the distributed file system. 

2. The java classes in the form of jar file containing the implementation of map and reduce 

functions. 

3. The job configuration by setting different parameters specific to the job. 

Stage 2 

The Hadoop job client then submits the job jar/executable etc and configuration to the JobTracker which 

then assumes the responsibility of distributing the software/configuration to the slaves, scheduling tasks 

and monitoring them, providing status and diagnostic information to the job-client. 

Stage 3 

The TaskTrackers on different nodes execute the task as per MapReduce implementation and output of 

the reduce function is stored into the output files on the file system. 

Advantages of Hadoop 

 Hadoop framework allows the user to quickly write and test distributed systems. It is efficient, 

and it automatic distributes the data and work across the machines and in turn, utilizes the 

underlying parallelism of the CPU cores. 

 Hadoop does not rely on hardware to provide fault-tolerance and high availability FTHAFTHA, 

rather Hadoop library itself has been designed to detect and handle failures at the application 

layer. 

 Servers can be added or removed from the cluster dynamically and Hadoop continues to operate 

without interruption. 

 Another big advantage of Hadoop is that apart from being open source, it is compatible on all the 

platforms since it is Java based. 

Hadoop Ecosystem 

 

Hadoop has gained its popularity due to its ability of storing, analysing and accessing large amount of 

data, quickly and cost effectively through clusters of commodity hardware. It won’t be wrong if we say 

that Apache Hadoop is actually a collection of several components and not just a single product. 

With Hadoop Ecosystem there are several commercial along with an open source products which are 

broadly used to make Hadoop laymen accessible and more usable.  The following sections provide 

additional information on the individual components  [28]: 

Hive:  

Hive is part of the Hadoop ecosystem and provides an SQL like interface to Hadoop. It is a data 

warehouse system for Hadoop that facilitates easy data summarization, ad-hoc queries, and the analysis 

of large datasets stored in Hadoop compatible file systems. It provides a mechanism to project structure 

onto this data and query the data using a SQL like language called HiveQL. Hive also allows traditional 

map/reduce programmers to plug in their custom mappers and reducers when it is inconvenient or 

inefficient to express this logic in HiveQL. 

Table 1. Components of Hadoop ecosystem 

Component Features/Description/Strength 

Hive Data warehouse with SQL-like access 



HBase Column-oriented database scaling to billions of rows 

Zookeeper Configuration management and coordination 

Mahout Library of machine learning and data mining algorithms 

Sqoop Imports data from relational databases 

Spark Fast and general engine for large-scale data processing 

Pig High-level programming language for Hadoop computations 

Oozie Orchestration and workflow management 

Flume Collection and import of log and event data 

Ambari Deployment, configuration and monitoring 

 

HBase: 

HBase is a distributed, column oriented database and uses HDFS for the underlying storage. HDFS 

works on write once and read many times pattern, but this isn’t a case always. We may require real 

time read/write random access for huge dataset; this is where HBase comes into the picture. HBase is 

built on top of HDFS and distributed on column-oriented database. 

ZooKeeper: 

ZooKeeper is a centralized service for maintaining configuration information, naming, providing 

distributed synchronization and providing group services which are very useful for a variety of 

distributed systems. HBase is not operational without ZooKeeper. 

Mahout: 

Mahout is a scalable machine learning library that implements various different approaches machine 

learning. At present Mahout contains four main groups of algorithms:  

Recommendations, also known as collective filtering 

Classifications, also known as categorization 

Clustering 

Frequent item set mining, also known as parallel frequent pattern mining 

Sqoop (SQL-to-Hadoop): 

Sqoop is a tool designed for efficiently transferring structured data from SQL Server and SQL Azure to 

HDFS and then uses it in MapReduce and Hive jobs. One can even use Sqoop to move data from HDFS 

to SQL Server. 

Apache Spark: 

Apache Spark is a general compute engine that offers fast data analysis on a large scale. Spark is built 

on HDFS but bypasses MapReduce and instead uses its own data processing framework. Common uses 

cases for Apache Spark include real-time queries, event stream processing, iterative algorithms, 

complex operations and machine learning. 

Pig: 

Pig is a platform for analyzing and querying huge data sets that consist of a high-level language for 

expressing data analysis programs, coupled with infrastructure for evaluating these programs. Pig’s 

built-in operations can make sense of semi-structured data, such as log files, and the language is 

extensible using Java to add support for custom data types and transformations. 

Oozie: 



Apache Oozie is a workflow/coordination system to manage Hadoop jobs. 

Flume: 

Flume is a framework for harvesting, aggregating and moving huge amounts of log data or text files in 

and out of Hadoop. Agents are populated throughout ones IT infrastructure inside web servers, 

application servers and mobile devices. Flume itself has a query processing engine, so it’s easy to 

transform each new batch of data before it is shuttled to the intended sink. 

Ambari: 

Ambari was created to help manage Hadoop. It offers support for many of the tools in the Hadoop 

ecosystem including Hive, HBase, Pig, Sqoop and Zookeeper. The tool features a management dashboard 

that keeps track of cluster health and can help diagnose performance issues. 

Thus concluding this discussion on frameworks it can be mentioned that Hadoop is powerful because it 

is extensible and it is easy to integrate with any component. Its popularity is due in part to its ability to 

store, analyze and access large amounts of data, quickly and cost effectively across clusters of commodity 

hardware. It is not actually a single product but instead a collection of several components. When all 

these components are merged, it makes the Hadoop very user friendly. 

Moving Data in and Out of Hadoop 

Hadoop File System was developed using distributed file system design. It is run on commodity 

hardware. Unlike other distributed systems, HDFS is highly fault tolerant and designed using low-cost 

hardware. 

HDFS holds very large amount of data and provides easier access. To store such huge data, the files are 

stored across multiple machines. These files are stored in redundant fashion to rescue the system from 

possible data losses in case of failure. HDFS also makes applications available to parallel processing. 

Features of HDFS 

 It is suitable for the distributed storage and processing. 

 Hadoop provides a command interface to interact with HDFS. 

 The built-in servers of namenode and datanode help users to easily check the status of cluster. 

 Streaming access to file system data. 

 HDFS provides file permissions and authentication. 

HDFS Architecture 

Given below is the architecture of a Hadoop File System. 



 

HDFS follows the master-slave architecture and it has the following elements. 

Namenode 

The namenode is the commodity hardware that contains the GNU/Linux operating system and the 

namenode software. It is a software that can be run on commodity hardware. The system having the 

namenode acts as the master server and it does the following tasks: 

 Manages the file system namespace. 

 Regulates client’s access to files. 

 It also executes file system operations such as renaming, closing, and opening files and 

directories. 

Datanode 

The datanode is a commodity hardware having the GNU/Linux operating system and datanode 

software. For every node Commodity hardware/System Commodity hardware/System in a cluster, there 

will be a datanode. These nodes manage the data storage of their system. 

 Datanodes perform read-write operations on the file systems, as per client request. 

 They also perform operations such as block creation, deletion, and replication according to the 

instructions of the namenode. 

Block 

Generally the user data is stored in the files of HDFS. The file in a file system will be divided into one 

or more segments and/or stored in individual data nodes. These file segments are called as blocks. In 

other words, the minimum amount of data that HDFS can read or write is called a Block. The default 

block size is 64MB, but it can be increased as per the need to change in HDFS configuration. 



Goals of HDFS 

 Fault detection and recovery : Since HDFS includes a large number of commodity hardware, 

failure of components is frequent. Therefore HDFS should have mechanisms for quick and 

automatic fault detection and recovery. 

 Huge datasets : HDFS should have hundreds of nodes per cluster to manage the applications 

having huge datasets. 

 Hardware at data : A requested task can be done efficiently, when the computation takes place 

near the data. Especially where huge datasets are involved, it reduces the network traffic and 

increases the throughput. 

MapReduce 

MapReduce is a framework using which we can write applications to process huge amounts of data, in 

parallel, on large clusters of commodity hardware in a reliable manner. 

What is MapReduce? 

MapReduce is a processing technique and a program model for distributed computing based on java. 

The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map takes a set of 

data and converts it into another set of data, where individual elements are broken down into 

tuples key/valuepairskey/valuepairs. Secondly, reduce task, which takes the output from a map as an 

input and combines those data tuples into a smaller set of tuples. As the sequence of the name 

MapReduce implies, the reduce task is always performed after the map job. 

The major advantage of MapReduce is that it is easy to scale data processing over multiple computing 

nodes. Under the MapReduce model, the data processing primitives are called mappers and reducers. 

Decomposing a data processing application into mappers and reducers is sometimes nontrivial. But, 

once we write an application in the MapReduce form, scaling the application to run over hundreds, 

thousands, or even tens of thousands of machines in a cluster is merely a configuration change. This 

simple scalability is what has attracted many programmers to use the MapReduce model. 

The Algorithm 

 Generally MapReduce paradigm is based on sending the computer to where the data resides! 

 MapReduce program executes in three stages, namely map stage, shuffle stage, and reduce stage. 

o Map stage : The map or mapper’s job is to process the input data. Generally the input 

data is in the form of file or directory and is stored in the Hadoop file system HDFSHDFS. 

The input file is passed to the mapper function line by line. The mapper processes the 

data and creates several small chunks of data. 

o Reduce stage : This stage is the combination of the Shuffle stage and the Reduce stage. 

The Reducer’s job is to process the data that comes from the mapper. After processing, it 

produces a new set of output, which will be stored in the HDFS. 

 During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate servers in 

the cluster. 

 The framework manages all the details of data-passing such as issuing tasks, verifying task 

completion, and copying data around the cluster between the nodes. 

 Most of the computing takes place on nodes with data on local disks that reduces the network 

traffic. 



 After completion of the given tasks, the cluster collects and reduces the data to form an 

appropriate result, and sends it back to the Hadoop server. 

 

Inputs and Outputs of MapReduce 

The MapReduce framework operates on <key, value> pairs, that is, the framework views the input to 

the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the output of the job, 

conceivably of different types. 

The key and the value classes should be in serialized manner by the framework and hence, need to 

implement the Writable interface. Additionally, the key classes have to implement the Writable-

Comparable interface to facilitate sorting by the framework. Input and Output types of a MapReduce 

job: InputInput <k1, v1> -> map -> <k2, v2>-> reduce -> <k3, v3>OutputOutput. 

 Input Output 

Map <k1, v1> list <k2,v2><k2,v2> 

Reduce <k2, listv2v2> list <k3,v3><k3,v3> 

Terminology 

 PayLoad - Applications implement the Map and the Reduce functions, and form the core of the 

job. 

 Mapper - Mapper maps the input key/value pairs to a set of intermediate key/value pair. 

 NamedNode - Node that manages the Hadoop Distributed File System HDFSHDFS. 

 DataNode - Node where data is presented in advance before any processing takes place. 

 MasterNode - Node where JobTracker runs and which accepts job requests from clients. 

 SlaveNode - Node where Map and Reduce program runs. 

 JobTracker - Schedules jobs and tracks the assign jobs to Task tracker. 

 Task Tracker - Tracks the task and reports status to JobTracker. 

 Job - A program is an execution of a Mapper and Reducer across a dataset. 

 Task - An execution of a Mapper or a Reducer on a slice of data. 

 Task Attempt - A particular instance of an attempt to execute a task on a SlaveNode. 

Example Scenario 

Given below is the data regarding the electrical consumption of an organization. It contains the monthly 

electrical consumption and the annual average for various years. 



 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg 

1979 23 23 2 43 24 25 26 26 26 26 25 26 25 

1980 26 27 28 28 28 30 31 31 31 30 30 30 29 

1981 31 32 32 32 33 34 35 36 36 34 34 34 34 

1984 39 38 39 39 39 41 42 43 40 39 38 38 40 

1985 38 39 39 39 39 41 41 41 00 40 39 39 45 

If the above data is given as input, we have to write applications to process it and produce results such 

as finding the year of maximum usage, year of minimum usage, and so on. This is a walkover for the 

programmers with finite number of records. They will simply write the logic to produce the required 

output, and pass the data to the application written. 

But, think of the data representing the electrical consumption of all the largescale industries of a 

particular state, since its formation. 

When we write applications to process such bulk data, 

 They will take a lot of time to execute. 

 There will be a heavy network traffic when we move data from source to network server and so 

on. 

To solve these problems, we have the MapReduce framework. 

Input Data 

The above data is saved as sample.txtand given as input. The input file looks as shown below. 

1979   23   23   2   43   24   25   26   26   26   26   25   26  25  

1980   26   27   28  28   28   30   31   31   31   30   30   30  29  

1981   31   32   32  32   33   34   35   36   36   34   34   34  34  

1984   39   38   39  39   39   41   42   43   40   39   38   38  40  

1985   38   39   39  39   39   41   41   41   00   40   39   39  45  

Example Program 

Given below is the program to the sample data using MapReduce framework. 

package hadoop;  

 

import java.util.*;  

 



import java.io.IOException;  

import java.io.IOException;  

 

import org.apache.hadoop.fs.Path;  

import org.apache.hadoop.conf.*;  

import org.apache.hadoop.io.*;  

import org.apache.hadoop.mapred.*;  

import org.apache.hadoop.util.*;  

 

public class ProcessUnits  

{  

   //Mapper class  

   public static class E_EMapper extends MapReduceBase implements  

   Mapper<LongWritable ,/*Input key Type */  

   Text,                /*Input value Type*/  

   Text,                /*Output key Type*/  

   IntWritable>        /*Output value Type*/  

   {  

       

      //Map function  

      public void map(LongWritable key, Text value,  

      OutputCollector<Text, IntWritable> output,    

      Reporter reporter) throws IOException  

      {  

         String line = value.toString();  

         String lasttoken = null;  

         StringTokenizer s = new StringTokenizer(line,"\t");  

         String year = s.nextToken();  

          

         while(s.hasMoreTokens()) 

            { 

               lasttoken=s.nextToken(); 

            }  



             

         int avgprice = Integer.parseInt(lasttoken);  

         output.collect(new Text(year), new IntWritable(avgprice));  

      }  

   }  

    

    

   //Reducer class  

   public static class E_EReduce extends MapReduceBase implements  

   Reducer< Text, IntWritable, Text, IntWritable >  

   {   

    

      //Reduce function  

      public void reduce( Text key, Iterator <IntWritable> values,  

         OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException  

         {  

            int maxavg=30;  

            int val=Integer.MIN_VALUE;  

             

            while (values.hasNext())  

            {  

               if((val=values.next().get())>maxavg)  

               {  

                  output.collect(key, new IntWritable(val));  

               }  

            }  

  

         }  

   }   

    

    

   //Main function  

   public static void main(String args[])throws Exception  



   {  

      JobConf conf = new JobConf(ProcessUnits.class);  

       

      conf.setJobName("max_eletricityunits");  

      conf.setOutputKeyClass(Text.class); 

      conf.setOutputValueClass(IntWritable.class);  

      conf.setMapperClass(E_EMapper.class);  

      conf.setCombinerClass(E_EReduce.class);  

      conf.setReducerClass(E_EReduce.class);  

      conf.setInputFormat(TextInputFormat.class);  

      conf.setOutputFormat(TextOutputFormat.class);  

       

      FileInputFormat.setInputPaths(conf, new Path(args[0]));  

      FileOutputFormat.setOutputPath(conf, new Path(args[1]));  

       

      JobClient.runJob(conf);  

   }  

}  

Save the above program as ProcessUnits.java. The compilation and execution of the program is 

explained below. 

Compilation and Execution of Process Units Program 

Let us assume we are in the home directory of a Hadoop user e.g./home/hadoope.g./home/hadoop. 

Follow the steps given below to compile and execute the above program. 

Step 1 

The following command is to create a directory to store the compiled java classes. 

$ mkdir units  

Step 2 

Download Hadoop-core-1.2.1.jar, which is used to compile and execute the MapReduce program. Visit 

the following link http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1 to download 

the jar. Let us assume the downloaded folder is /home/hadoop/. 

Step 3 

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1


The following commands are used for compiling the ProcessUnits.java program and creating a jar for 

the program. 

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java  

$ jar -cvf units.jar -C units/ .  

Step 4 

The following command is used to create an input directory in HDFS. 

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir  

Step 5 

The following command is used to copy the input file named sample.txtin the input directory of HDFS. 

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir  

Step 6 

The following command is used to verify the files in the input directory. 

$HADOOP_HOME/bin/hadoop fs -ls input_dir/  

Step 7 

The following command is used to run the Eleunit_max application by taking the input files from the 

input directory. 

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir output_dir  

Wait for a while until the file is executed. After execution, as shown below, the output will contain the 

number of input splits, the number of Map tasks, the number of reducer tasks, etc. 

INFO mapreduce.Job: Job job_1414748220717_0002  

completed successfully  

14/10/31 06:02:52  

INFO mapreduce.Job: Counters: 49  

File System Counters  

  

FILE: Number of bytes read=61  

FILE: Number of bytes written=279400  

FILE: Number of read operations=0  



FILE: Number of large read operations=0    

FILE: Number of write operations=0  

HDFS: Number of bytes read=546  

HDFS: Number of bytes written=40  

HDFS: Number of read operations=9  

HDFS: Number of large read operations=0  

HDFS: Number of write operations=2 Job Counters  

 

 

   Launched map tasks=2   

   Launched reduce tasks=1  

   Data-local map tasks=2   

   Total time spent by all maps in occupied slots (ms)=146137  

   Total time spent by all reduces in occupied slots (ms)=441    

   Total time spent by all map tasks (ms)=14613  

   Total time spent by all reduce tasks (ms)=44120  

   Total vcore-seconds taken by all map tasks=146137  

    

   Total vcore-seconds taken by all reduce tasks=44120  

   Total megabyte-seconds taken by all map tasks=149644288  

   Total megabyte-seconds taken by all reduce tasks=45178880  

    

Map-Reduce Framework  

  

Map input records=5   

   Map output records=5    

   Map output bytes=45   

   Map output materialized bytes=67   

   Input split bytes=208  

   Combine input records=5   

   Combine output records=5  

   Reduce input groups=5   

   Reduce shuffle bytes=6   



   Reduce input records=5   

   Reduce output records=5   

   Spilled Records=10   

   Shuffled Maps =2   

   Failed Shuffles=0   

   Merged Map outputs=2   

   GC time elapsed (ms)=948   

   CPU time spent (ms)=5160   

   Physical memory (bytes) snapshot=47749120   

   Virtual memory (bytes) snapshot=2899349504   

   Total committed heap usage (bytes)=277684224 

      

File Output Format Counters  

  

   Bytes Written=40  

Step 8 

The following command is used to verify the resultant files in the output folder. 

$HADOOP_HOME/bin/hadoop fs -ls output_dir/  

Step 9 

The following command is used to see the output in Part-00000 file. This file is generated by HDFS. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000  

Below is the output generated by the MapReduce program. 

1981    34  

1984    40  

1985    45  

Step 10 

The following command is used to copy the output folder from HDFS to the local file system for 

analyzing. 



$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs get output_dir 

/home/hadoop  

Important Commands 

All Hadoop commands are invoked by the $HADOOP_HOME/bin/hadoop command. Running the 

Hadoop script without any arguments prints the description for all commands. 

Usage : hadoop [--config confdir] COMMAND 

The following table lists the options available and their description. 

Options Description 

namenode -format Formats the DFS filesystem. 

secondarynamenode Runs the DFS secondary namenode. 

namenode Runs the DFS namenode. 

datanode Runs a DFS datanode. 

dfsadmin Runs a DFS admin client. 

mradmin Runs a Map-Reduce admin client. 

fsck Runs a DFS filesystem checking utility. 

fs Runs a generic filesystem user client. 

balancer Runs a cluster balancing utility. 

oiv Applies the offline fsimage viewer to an fsimage. 

fetchdt Fetches a delegation token from the NameNode. 

jobtracker Runs the MapReduce job Tracker node. 

pipes Runs a Pipes job. 

tasktracker Runs a MapReduce task Tracker node. 

historyserver Runs job history servers as a standalone daemon. 



job Manipulates the MapReduce jobs. 

queue Gets information regarding JobQueues. 

version Prints the version. 

jar <jar> Runs a jar file. 

distcp <srcurl> <desturl> Copies file or directories recursively. 

distcp2 <srcurl> <desturl> DistCp version 2. 

archive -archiveName 

NAME -p 

Creates a hadoop archive. 

<parent path> <src>* <dest>  

classpath Prints the class path needed to get the Hadoop jar and the 

required libraries. 

daemonlog Get/Set the log level for each daemon 

How to Interact with MapReduce Jobs 

Usage: hadoop job [GENERIC_OPTIONS] 

The following are the Generic Options available in a Hadoop job. 

GENERIC_OPTIONS Description 

-submit <job-file> Submits the job. 

-status <job-id> Prints the map and reduce completion percentage and all 

job counters. 

-counter <job-id> <group-

name> <countername> 

Prints the counter value. 

-kill <job-id> Kills the job. 

-events <job-id> <fromevent-

#> <#-of-events> 

Prints the events' details received by jobtracker for the 

given range. 

-history [all] <jobOutputDir> - 

history < jobOutputDir> 

Prints job details, failed and killed tip details. More 

details about the job such as successful tasks and task 

attempts made for each task can be viewed by specifying 

the [all] option. 



-list[all] Displays all jobs. -list displays only jobs which are yet to 

complete. 

-kill-task <task-id> Kills the task. Killed tasks are NOT counted against failed 

attempts. 

-fail-task <task-id> Fails the task. Failed tasks are counted against failed 

attempts. 

-set-priority <job-id> 

<priority> 

Changes the priority of the job. Allowed priority values are 

VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW 

To see the status of job 

$ $HADOOP_HOME/bin/hadoop job -status <JOB-ID>  

e.g.  

$ $HADOOP_HOME/bin/hadoop job -status job_201310191043_0004  

To see the history of job output-dir 

$ $HADOOP_HOME/bin/hadoop job -history <DIR-NAME>  

e.g.  

$ $HADOOP_HOME/bin/hadoop job -history /user/expert/output  

To kill the job 

$ $HADOOP_HOME/bin/hadoop job -kill <JOB-ID>  

e.g.  

$ $HADOOP_HOME/bin/hadoop job -kill job_201310191043_0004  

Serialization and Deserialization in Hadoop 

Serilaization is the process of converting structured objects into a byte stream. It is done basically for 

two purposes one, for transmission over a network(interprocess communication) and for writing to 

persisitent storage. In Hadoop the interprocess communication between nodes in the system is done by 

using remote procedure calls i.e. RPCs. The RPC rotocol uses serialization to make the message into a 

binary stream to be sent to the remote node,which receives and deserializes the binary stream into the 

original message. 

RPC serialization format is expected to be: 

 Compact: To efficenetly use network bandwidth. 

 Fast: Very little performance overhead is expected for serialization and deserilization process. 

 Extensible: To adept to new changes and reqirements. 



 Interoperable:The format needs to be designed to support clients that are written in different 

languages to the server. 

It should be noted that the data format for persistent storage purposes would have different 

requirements from serilaization framework in addition to four expected properties of an RPC's 

serialization format mentioned above. 

 Compact : To efficenetly use storage space. 

 Fast : To keep the overhead in reading or writing terabytes of data minimal. 

 Extensible : To transparently read data written in older format. 

 Interoperable :To read and write persistent using different languages. 

 

Hadoop uses its own serialization format,Writables. Writable is compact and fast, but not extensible or 

interoperable. 

The Writable Interface 

 

The Writable interface has two methods, one for writing and one for reading. The method for writing 

writes its state to a DataOutput binary stream and the method for reading reads its state from a 

DataInput binary stream. 

 

 

public interface Writable 

{ 

void write(DataOutput out) throws IOException; 

void readFields(DataOutput in)throws IOException; 

} 

Let us understand serialization with an example.Given below is a helper method. 

 

 

public static byte[] serialize(Writable writable) throws IOException 

 { 

   ByteArrayOutputStream out = new ByteArrayOutputStream(); 

   DataOutputStream dataOut = new DataOutputStream(out); 

   writable.write(dataOut); 

   dataOut.close(); 

   return out.toByteArray(); 

} 

Let’s try deserialization. Again, we create a helper method to read a Writable object from a byte array: 

 

 

public static byte[] deserialize(Writable writable, byte[] bytes) throws IOException  

{ 

ByteArrayInputStream in = new ByteArrayInputStream(bytes); 

DataInputStream dataIn = new DataInputStream(in); 

writable.readFields(dataIn); 

dataIn.close(); 

return bytes; 

} 

 



 

WritableComparable and comparators 

 

IntWritable implements the WritableComparable interface, which is a subinterface of the Writable and 

java.lang.Comparable interfaces: 

 

 

package org.apache.hadoop.io; 

public interface WritableComparable extends Writable, Comparable  

 

{ 

} 

Comparison of types is important for MapReduce because in MapReduce there is sorting phase during 

which keys are compared with one another. Hadoop provides RawComparator extension of Java’s 

Comparator: 

 

 

package org.apache.hadoop.io; 

import java.util.Comparator; 

public interface RawComparator extends Comparator { 

public int compare(byte[] b1,int s1,int l1,byte[] b2, int s2, int l2); 

} 

This interface permits implementors to compare records read from a stream without deserializing them 

into objects, hence avoiding any overhead of object creation. For example, the comparator for 

IntWritables implements the raw compare() method by reading an integer from each of the byte arrays 

b1 and b2 and comparing them directly from the given start positions (s1 and s2) and lengths (l1 and 

l2). WritableComparator is a general-purpose implementation of RawComparator for 

WritableComparable classes. It provides two main functions: 

First, it provides a default implementation of the raw compare() method that deserializes the objects to 

be compared from the stream and invokes the object compare() method. Second, it acts as a factory for 

RawComparator instances (that Writable implementations have registered). 

For example, to obtain a comparator for IntWritable, we just use: RawComparator comparator = 

WritableComparator.get(IntWritable.class); The comparator can be used to compare two IntWritable 

objects: 

 

IntWritable w1 = new IntWritable(163); 

IntWritable w2 = new IntWritable(67); 

 

assertThat(comparator.compare(w1, w2), greaterThan(0)); or their serialized representations: 

 

byte[] b1 = serialize(w1); 

byte[] b2 = serialize(w2); 

 

assertThat(comparator.compare(b1, 0, b1.length, b2, 0, b2.length), greaterThan(0)); 
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