GUJARAT TECHNOLOGICAL UNIVERSITY

BRANCH NAME: Information Technology (16) SUBJECT NAME: BIG DATA ANALYTICS SUBJECT CODE: 2171607

B.E. 7th SEMESTER

Type of course: Elective

Prerequisite: NA

Rationale: NA.

Teaching and Examination Scheme:

Teaching Scheme Credits				Examination Marks					Total	
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		ESE (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total	%
		Hrs	Weightage
1	INTRODUCTION TO BIG DATA Introduction– distributed file system–Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications. Algorithms using map reduce	06	13
2	INTRODUCTIONTOHADOOPANDHADOOPARCHITECTUREBigData – ApacheHadoop& HadoopEcoSystem, MovingData in and out ofHadoop – Understanding inputs and outputs ofMapReduce -, Data Serialization.	12	25
3	HDFS, HIVE AND HIVEQL, HBASE HDFS-Overview, Installation and Shell, Java API; Hive Architecture and Installation, Comparison with Traditional Database, HiveQL Querying Data, Sorting And Aggregating, Map Reduce Scripts, Joins & Sub queries, HBase concepts, Advanced Usage, Schema Design, Advance Indexing, PIG, Zookeeper , how it helps in monitoring a cluster, HBase uses Zookeeper and how to Build Applications with Zookeeper.	08	15
4	SPARK Introduction to Data Analysis with Spark, Downloading Spark and Getting Started, Programming with RDDs, Machine	12	20

	Learning with MLlib.		
5	NoSQL What is it?, Where It is Used Types of NoSQL databases, Why NoSQL?, Advantages of NoSQL, Use of NoSQL in Industry, SQL vs NoSQL, NewSQL	05	12
6	Data Base for the Modern Web Introduction to MongoDB key features, Core Server tools, MongoDB through the JavaScript's Shell, Creating and Querying through Indexes, Document-Oriented, principles of schema design, Constructing queries on Databases, collections and Documents, MongoDB Query Language.	08	15

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	20	25	28	16	0		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Boris lublinsky, Kevin t. Smith, AlexeyYakubovich, "Professional Hadoop Solutions", Wiley, ISBN: 9788126551071, 2015.
- 2. Chris Eaton, Dirk derooset al., "Understanding Big data", McGraw Hill, 2012.
- 3. BIG Data and Analytics, Sima Acharya, Subhashini Chhellappan, Willey
- 4. MongoDB in Action, Kyle Banker, Piter Bakkum, Shaun Verch, Dream tech Press
- 5. Tom White, "HADOOP: The definitive Guide", O Reilly 2012.
- 6. VigneshPrajapati, "Big Data Analyticswith R and Haoop", Packet Publishing 2013.
- 7. http://www.bigdatauniversity.com/
- 8. Learning Spark: Lightning-Fast Big Data Analysis Paperback by Holden Karau

Course Outcome:

Upon completion of this course, students will be able to do the following:

- Students will to build and maintain reliable, scalable, distributed systems with Apache Hadoop.
- Students will be able to write Map-Reduce based Applications

- Students will be able to design and build MongoDB based Big data Applications and learn MongoDB query language
- Students will learn difference between conventional SQL query language and NoSQL basic concepts
- Students will learn tips and tricks for Big Data use cases and solutions.

List of Experiments:

- 1. To understand the overall programming architecture using Map Reduce API
- 2. Store the basic information about students such as roll no, name, date of birth , and address of student using various collection types such as List, Set and Map
- 3. Basic CRUD operations in MongoDB
- 4. Retrieve various types of documents from students collection
- 5. To find documents from Students collection
- 6. Develop Map Reduce Work Application
- 7. Creating the HDFS tables and loading them in Hive and learn joining of tables in Hive

Design based Problems (DP)/Open Ended Problem:

- 1. Create a system which can use of Web search, web crawlers and web information retrieval.
- 2. Analyze and implement a system with Web graph mining.
- 3. Implement and Subscribe RSS News feeds to get latest news in India.

Major Equipment:

XMLSpy, RSS Feed, RSS Reader.

List of Open Source Software/learning website:

- <u>http://in.reuters.com/tools/rss</u>
- <u>http://www.altova.com/xmlspy.html</u>
- <u>https://www.w3.org/RDF/</u>

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.