

MongoDB

i

About the Tutorial

MongoDB is an open-source document database and leading NoSQL database. MongoDB

is written in C++.

This tutorial will give you great understanding on MongoDB concepts needed to create and

deploy a highly scalable and performance-oriented database.

Audience

This tutorial is designed for Software Professionals who are willing to learn MongoDB

Database in simple and easy steps. It will throw light on MongoDB concepts and after

completing this tutorial you will be at an intermediate level of expertise, from where you

can take yourself at higher level of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of database,

text editor and execution of programs, etc. Because we are going to develop high

performance database, so it will be good if you have an understanding on the basic
concepts of Database (RDBMS).

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

MongoDB

ii

Table of Contents

About the Tutorial ... i
Audience .. i
Prerequisites .. i
Copyright & Disclaimer .. i
Table of Contents.. ii

MONGODB .. 1

1. MongoDB ─ Overview ... 2

2. MongoDB ─ Advantages .. 4

3. MongoDB ─ Environment .. 5

4. MongoDB ─ Data Modelling .. 10

5. MongoDB ─ Create Database .. 12

6. MongoDB ─ Drop Database ... 13

7. MongoDB ─ Create Collection ... 14

8. MongoDB ─ Drop Collection .. 16

9. MongoDB ─ Datatypes .. 17

10. MongoDB ─ Insert Document .. 18

11. MongoDB ─ Query Document ... 20

12. MongoDB ─ Update Document ... 24

13. MongoDB ─ Delete Document ... 26

14. MongoDB ─ Projection .. 28

15. MongoDB ─ Limit Records ... 29

16. MongoDB ─ Sort Records .. 31

17. MongoDB ─ Indexing ... 32

18. MongoDB ─ Aggregation ... 34

19. MongoDB ─ Replication ... 38

20. MongoDB ─ Sharding... 41

21. MongoDB ─ Create Backup .. 43

MongoDB

iii

22. MongoDB ─ Deployment ... 45

23. MongoDB ─ Java .. 48

24. MongoDB ─ PHP .. 60

ADVANCED MONGODB ... 66

25. MongoDB ─ Relationships ... 67

26. MongoDB ─ Database References ... 70

27. MongoDB ─ Covered Queries .. 72

28. MongoDB ─ Analyzing Queries .. 74

29. MongoDB ─ Atomic Operations ... 76

30. MongoDB ─ Advanced Indexing .. 78

31. MongoDB ─ Indexing Limitations .. 80

32. MongoDB ─ ObjectId ... 81

33. MongoDB ─ MapReduce .. 83

34. MongoDB ─ Text Search .. 86

35. MongoDB ─ Regular Expression ... 88

36. MongoDB ─ RockMongo .. 90

37. MongoDB ─ GridFS .. 91

38. MongoDB ─ Capped Collections .. 93

39. MongoDB ─ Auto-Increment Sequence ... 95

MongoDB

1

MongoDB

MongoDB

2

MongoDB is a cross-platform, document oriented database that provides, high

performance, high availability, and easy scalability. MongoDB works on concept of

collection and document.

Database

Database is a physical container for collections. Each database gets its own set of files on
the file system. A single MongoDB server typically has multiple databases.

Collection

Collection is a group of MongoDB documents. It is the equivalent of an RDBMS table. A

collection exists within a single database. Collections do not enforce a schema. Documents

within a collection can have different fields. Typically, all documents in a collection are of
similar or related purpose.

Document

A document is a set of key-value pairs. Documents have dynamic schema. Dynamic

schema means that documents in the same collection do not need to have the same set

of fields or structure, and common fields in a collection's documents may hold different
types of data.

The following table shows the relationship of RDBMS terminology with MongoDB.

RDBMS MongoDB

Database Database

Table Collection

Tuple/Row Document

column Field

Table Join Embedded Documents

Primary Key
Primary Key (Default key _id provided by

mongodb itself)

Database Server and Client

Mysqld/Oracle mongod

mysql/sqlplus mongo

1. MongoDB ─ Overview

MongoDB

3

Sample Document

Following example shows the document structure of a blog site, which is simply a comma
separated key value pair.

{

 _id: ObjectId(7df78ad8902c)

 title: 'MongoDB Overview',

 description: 'MongoDB is no sql database',

 by: 'tutorials point',

 url: 'http://www.tutorialspoint.com',

 tags: ['mongodb', 'database', 'NoSQL'],

 likes: 100,

 comments: [

 {

 user:'user1',

 message: 'My first comment',

 dateCreated: new Date(2011,1,20,2,15),

 like: 0

 },

 {

 user:'user2',

 message: 'My second comments',

 dateCreated: new Date(2011,1,25,7,45),

 like: 5

 }

]

}

_id is a 12 bytes hexadecimal number which assures the uniqueness of every document.

You can provide _id while inserting the document. If you don’t provide then MongoDB

provides a unique id for every document. These 12 bytes first 4 bytes for the current

timestamp, next 3 bytes for machine id, next 2 bytes for process id of MongoDB server
and remaining 3 bytes are simple incremental VALUE.

MongoDB

4

Any relational database has a typical schema design that shows number of tables and the
relationship between these tables. While in MongoDB, there is no concept of relationship.

Advantages of MongoDB over RDBMS

 Schema less: MongoDB is a document database in which one collection holds

different documents. Number of fields, content and size of the document can differ

from one document to another.

 Structure of a single object is clear.

 No complex joins.

 Deep query-ability. MongoDB supports dynamic queries on documents using a

document-based query language that's nearly as powerful as SQL.

 Tuning.

 Ease of scale-out: MongoDB is easy to scale.

 Conversion/mapping of application objects to database objects not needed.

 Uses internal memory for storing the (windowed) working set, enabling faster

access of data.

Why Use MongoDB?

 Document Oriented Storage: Data is stored in the form of JSON style documents.

 Index on any attribute

 Replication and high availability

 Auto-sharding

 Rich queries

 Fast in-place updates

 Professional support by MongoDB

Where to Use MongoDB?

 Big Data

 Content Management and Delivery

 Mobile and Social Infrastructure

 User Data Management

 Data Hub

2. MongoDB ─ Advantages

MongoDB

5

Let us now see how to install MongoDB on Windows.

Install MongoDB on Windows

To install MongoDB on Windows, first download the latest release of MongoDB

from http://www.mongodb.org/downloads. Make sure you get correct version of MongoDB

depending upon your Windows version. To get your Windows version, open command
prompt and execute the following command.

C:\>wmic os get osarchitecture

OSArchitecture

64-bit

C:\>

32-bit versions of MongoDB only support databases smaller than 2GB and suitable only
for testing and evaluation purposes.

Now extract your downloaded file to c:\ drive or any other location. Make sure the name

of the extracted folder is mongodb-win32-i386-[version] or mongodb-win32-x86_64-
[version]. Here [version] is the version of MongoDB download.

Next, open the command prompt and run the following command.

C:\>move mongodb-win64-* mongodb

 1 dir(s) moved.

C:\>

In case you have extracted the MongoDB at different location, then go to that path by

using command cd FOOLDER/DIR and now run the above given process.

MongoDB requires a data folder to store its files. The default location for the MongoDB

data directory is c:\data\db. So you need to create this folder using the Command Prompt.
Execute the following command sequence.

C:\>md data

C:\md data\db

If you have to install the MongoDB at a different location, then you need to specify an

alternate path for \data\db by setting the path dbpath in mongod.exe. For the same,
issue the following commands.

3. MongoDB ─ Environment

http://www.mongodb.org/downloads

MongoDB

6

In the command prompt, navigate to the bin directory present in the MongoDB installation
folder. Suppose my installation folder is D:\set up\mongodb

C:\Users\XYZ>d:

D:\>cd "set up"

D:\set up>cd mongodb

D:\set up\mongodb>cd bin

D:\set up\mongodb\bin>mongod.exe --dbpath "d:\set up\mongodb\data"

This will show waiting for connections message on the console output, which indicates

that the mongod.exe process is running successfully.

Now to run the MongoDB, you need to open another command prompt and issue the
following command.

D:\set up\mongodb\bin>mongo.exe

MongoDB shell version: 2.4.6

connecting to: test

>db.test.save({ a: 1 })

>db.test.find()

{ "_id" : ObjectId(5879b0f65a56a454), "a" : 1 }

>

This will show that MongoDB is installed and run successfully. Next time when you run

MongoDB, you need to issue only commands.

D:\set up\mongodb\bin>mongod.exe --dbpath "d:\set up\mongodb\data"

D:\set up\mongodb\bin>mongo.exe

Install MongoDB on Ubuntu

Run the following command to import the MongoDB public GPG key −

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

Create a /etc/apt/sources.list.d/mongodb.list file using the following command.

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen'

 | sudo tee /etc/apt/sources.list.d/mongodb.list

Now issue the following command to update the repository −

sudo apt-get update

MongoDB

7

Next install the MongoDB by using the following command −

apt-get install mongodb-10gen=2.2.3

In the above installation, 2.2.3 is currently released MongoDB version. Make sure to install
the latest version always. Now MongoDB is installed successfully.

Start MongoDB

sudo service mongodb start

Stop MongoDB

sudo service mongodb stop

Restart MongoDB

sudo service mongodb restart

To use MongoDB run the following command.

mongo

This will connect you to running MongoDB instance.

MongoDB Help

To get a list of commands, type db.help() in MongoDB client. This will give you a list of

commands as shown in the following screenshot.

MongoDB

8

MongoDB

9

MongoDB Statistics

To get stats about MongoDB server, type the command db.stats() in MongoDB client.

This will show the database name, number of collection and documents in the database.

Output of the command is shown in the following screenshot.

MongoDB

10

Data in MongoDB has a flexible schema.documents in the same collection. They do not

need to have the same set of fields or structure, and common fields in a collection’s

documents may hold different types of data.

Some considerations while designing Schema in MongoDB

 Design your schema according to user requirements.

 Combine objects into one document if you will use them together. Otherwise

separate them (but make sure there should not be need of joins).

 Duplicate the data (but limited) because disk space is cheap as compare to compute

time.

 Do joins while write, not on read.

 Optimize your schema for most frequent use cases.

 Do complex aggregation in the schema.

Example

Suppose a client needs a database design for his blog/website and see the differences
between RDBMS and MongoDB schema design. Website has the following requirements.

 Every post has the unique title, description and url.

 Every post can have one or more tags.

 Every post has the name of its publisher and total number of likes.

 Every post has comments given by users along with their name, message, data-

time and likes.

 On each post, there can be zero or more comments.

In RDBMS schema, design for above requirements will have minimum three tables.

4. MongoDB ─ Data Modelling

MongoDB

11

While in MongoDB schema, design will have one collection post and the following structure:

{

 _id: POST_ID

 title: TITLE_OF_POST,

 description: POST_DESCRIPTION,

 by: POST_BY,

 url: URL_OF_POST,

 tags: [TAG1, TAG2, TAG3],

 likes: TOTAL_LIKES,

 comments: [

 {

 user:'COMMENT_BY',

 message: TEXT,

 dateCreated: DATE_TIME,

 like: LIKES

 },

 {

 user:'COMMENT_BY',

 message: TEXT,

 dateCreated: DATE_TIME,

 like: LIKES

 }

]

}

So while showing the data, in RDBMS you need to join three tables and in MongoDB, data

will be shown from one collection only.

MongoDB

12

In this chapter, we will see how to create a database in MongoDB.

The use Command

MongoDB use DATABASE_NAME is used to create database. The command will create a

new database if it doesn't exist, otherwise it will return the existing database.

Syntax

Basic syntax of use DATABASE statement is as follows:

use DATABASE_NAME

Example

If you want to create a database with name <mydb>, then use DATABASE statement
would be as follows:

>use mydb

switched to db mydb

To check your currently selected database, use the command db

>db

mydb

If you want to check your databases list, use the command show dbs.

>show dbs

local 0.78125GB

test 0.23012GB

Your created database (mydb) is not present in list. To display database, you need to
insert at least one document into it.

>db.movie.insert({"name":"tutorials point"})

>show dbs

local 0.78125GB

mydb 0.23012GB

test 0.23012GB

In MongoDB default database is test. If you didn't create any database, then collections

will be stored in test database.

5. MongoDB ─ Create Database

MongoDB

13

In this chapter, we will see how to drop a database using MongoDB command.

The dropDatabase() Method

MongoDB db.dropDatabase() command is used to drop a existing database.

Syntax

Basic syntax of dropDatabase() command is as follows:

db.dropDatabase()

This will delete the selected database. If you have not selected any database, then it will

delete default 'test' database.

Example

First, check the list of available databases by using the command, show dbs.

>show dbs

local 0.78125GB

mydb 0.23012GB

test 0.23012GB

>

If you want to delete new database <mydb>, then dropDatabase() command would be
as follows:

>use mydb

switched to db mydb

>db.dropDatabase()

>{ "dropped" : "mydb", "ok" : 1 }

>

Now check list of databases.

>show dbs

local 0.78125GB

test 0.23012GB

>

6. MongoDB ─ Drop Database

MongoDB

14

In this chapter, we will see how to create a collection using MongoDB.

The createCollection() Method

MongoDB db.createCollection(name, options) is used to create collection.

Syntax

Basic syntax of createCollection() command is as follows:

db.createCollection(name, options)

In the command, name is name of collection to be created. Options is a document and

is used to specify configuration of collection.

Parameter Type Description

Name String Name of the collection to be created

Options Document
(Optional) Specify options about memory

size and indexing

Options parameter is optional, so you need to specify only the name of the collection.

Following is the list of options you can use:

Field Type Description

capped Boolean

(Optional) If true, enables a capped collection. Capped

collection is a fixed size collection that automatically

overwrites its oldest entries when it reaches its maximum

size. If you specify true, you need to specify size

parameter also.

autoIndexID Boolean
(Optional) If true, automatically create index on _id field.

Default value is false.

size number

(Optional) Specifies a maximum size in bytes for a capped

collection. If capped is true, then you need to specify

this field also.

max number
(Optional) Specifies the maximum number of documents

allowed in the capped collection.

7. MongoDB ─ Create Collection

MongoDB

15

While inserting the document, MongoDB first checks size field of capped collection, then it
checks max field.

Examples

Basic syntax of createCollection() method without options is as follows:

>use test

switched to db test

>db.createCollection("mycollection")

{ "ok" : 1 }

>

You can check the created collection by using the command show collections.

>show collections

mycollection

system.indexes

The following example shows the syntax of createCollection() method with few
important options:

>db.createCollection("mycol", { capped : true, autoIndexID : true, size :
6142800, max : 10000 })

{ "ok" : 1 }

>

In MongoDB, you don't need to create collection. MongoDB creates collection
automatically, when you insert some document.

>db.tutorialspoint.insert({"name" : "tutorialspoint"})

>show collections

mycol

mycollection

system.indexes

tutorialspoint

>

MongoDB

16

In this chapter, we will see how to drop a collection using MongoDB.

The drop() Method

MongoDB's db.collection.drop() is used to drop a collection from the database.

Syntax

Basic syntax of drop() command is as follows:

db.COLLECTION_NAME.drop()

Example

First, check the available collections into your database mydb.

>use mydb

switched to db mydb

>show collections

mycol

mycollection

system.indexes

tutorialspoint>

Now drop the collection with the name mycollection.

>db.mycollection.drop()

true

>

Again check the list of collections into database.

>show collections

mycol

system.indexes

tutorialspoint

>

drop() method will return true, if the selected collection is dropped successfully, otherwise
it will return false.

8. MongoDB ─ Drop Collection

MongoDB

17

MongoDB supports many datatypes. Some of them are:

 String: This is the most commonly used datatype to store the data. String in

MongoDB must be UTF-8 valid.

 Integer: This type is used to store a numerical value. Integer can be 32 bit or 64

bit depending upon your server.

 Boolean: This type is used to store a boolean (true/ false) value.

 Double: This type is used to store floating point values.

 Min/Max Keys: This type is used to compare a value against the lowest and

highest BSON elements.

 Arrays: This type is used to store arrays or list or multiple values into one key.

 Timestamp: ctimestamp. This can be handy for recording when a document has

been modified or added.

 Object: This datatype is used for embedded documents.

 Null: This type is used to store a Null value.

 Symbol: This datatype is used identically to a string; however, it's generally

reserved for languages that use a specific symbol type.

 Date: This datatype is used to store the current date or time in UNIX time format.

You can specify your own date time by creating object of Date and passing day,

month, year into it.

 Object ID: This datatype is used to store the document’s ID.

 Binary data: This datatype is used to store binary data.

 Code: This datatype is used to store JavaScript code into the document.

 Regular expression: This datatype is used to store regular expression.

9. MongoDB ─ Datatypes

MongoDB

18

In this chapter, we will learn how to insert document in MongoDB collection.

The insert() Method

To insert data into MongoDB collection, you need to use MongoDB's insert() or

save()method.

Syntax

The basic syntax of insert() command is as follows −

>db.COLLECTION_NAME.insert(document)

Example

>db.mycol.insert({

 _id: ObjectId(7df78ad8902c),

 title: 'MongoDB Overview',

 description: 'MongoDB is no sql database',

 by: 'tutorials point',

 url: 'http://www.tutorialspoint.com',

 tags: ['mongodb', 'database', 'NoSQL'],

 likes: 100

})

Here mycol is our collection name, as created in the previous chapter. If the collection

doesn't exist in the database, then MongoDB will create this collection and then insert a

document into it.

In the inserted document, if we don't specify the _id parameter, then MongoDB assigns a
unique ObjectId for this document.

_id is 12 bytes hexadecimal number unique for every document in a collection. 12 bytes
are divided as follows −

_id: ObjectId(4 bytes timestamp, 3 bytes machine id, 2 bytes process id, 3
bytes incrementer)

To insert multiple documents in a single query, you can pass an array of documents in
insert() command.

10. MongoDB ─ Insert Document

MongoDB

19

Example

>db.post.insert([

 {

 title: 'MongoDB Overview',

 description: 'MongoDB is no sql database',

 by: 'tutorials point',

 url: 'http://www.tutorialspoint.com',

 tags: ['mongodb', 'database', 'NoSQL'],

 likes: 100

 },

 {

 title: 'NoSQL Database',

 description: 'NoSQL database doesn't have tables',

 by: 'tutorials point',

 url: 'http://www.tutorialspoint.com',

 tags: ['mongodb', 'database', 'NoSQL'],

 likes: 20,

 comments: [

 {

 user:'user1',

 message: 'My first comment',

 dateCreated: new Date(2013,11,10,2,35),

 like: 0

 }

]

 }

])

To insert the document you can use db.post.save(document) also. If you don't

specify _id in the document then save() method will work same as insert() method. If
the save() method.

MongoDB

20

In this chapter, we will learn how to query document from MongoDB collection.

The find() Method

To query data from MongoDB collection, you need to use MongoDB's find()method.

Syntax

The basic syntax of find() method is as follows:

>db.COLLECTION_NAME.find()

find()method will display all the documents in a non-structured way.

The pretty() Method

To display the results in a formatted way, you can use pretty() method.

Syntax

>db.mycol.find().pretty()

Example

>db.mycol.find().pretty()

{

 "_id": ObjectId(7df78ad8902c),

 "title": "MongoDB Overview",

 "description": "MongoDB is no sql database",

 "by": "tutorials point",

 "url": "http://www.tutorialspoint.com",

 "tags": ["mongodb", "database", "NoSQL"],

 "likes": "100"

}

>

Apart from find() method, there is findOne() method, that returns only one document.

11. MongoDB ─ Query Document

MongoDB

21

RDBMS Where Clause Equivalents in MongoDB

To query the document on the basis of some condition, you can use following operations

Operation Syntax Example
RDBMS

Equivalent

Equality {<key>:<value>}
db.mycol.find({"by":"tutorials
point"}).pretty()

where by =

'tutorials
point'

Less Than {<key>:{$lt:<value>}}
db.mycol.find({"likes":{$lt:50}}).prett
y()

where likes
< 50

Less Than
Equals

{<key>:{$lte:<value>}}
db.mycol.find({"likes":{$lte:50}}).pret
ty()

where likes
<= 50

Greater
Than

{<key>:{$gt:<value>}}
db.mycol.find({"likes":{$gt:50}}).pret
ty()

where likes
> 50

Greater

Than
Equals

{<key>:{$gte:<value>}}
db.mycol.find({"likes":{$gte:50}}).pre
tty()

where likes
>= 50

Not Equals {<key>:{$ne:<value>}}
db.mycol.find({"likes":{$ne:50}}).pret
ty()

where likes
!= 50

AND in MongoDB

Syntax

In the find() method, if you pass multiple keys by separating them by ',' then MongoDB
treats it as AND condition. Following is the basic syntax of AND −

>db.mycol.find({key1:value1, key2:value2}).pretty()

Example

Following example will show all the tutorials written by 'tutorials point' and whose title is
'MongoDB Overview'.

>db.mycol.find({"by":"tutorials point","title": "MongoDB Overview"}).pretty()

{

 "_id": ObjectId(7df78ad8902c),

 "title": "MongoDB Overview",

 "description": "MongoDB is no sql database",

 "by": "tutorials point",

 "url": "http://www.tutorialspoint.com",

MongoDB

22

 "tags": ["mongodb", "database", "NoSQL"],

 "likes": "100"

}

>

For the above given example, equivalent where clause will be ' where by='tutorials

point' AND title = 'MongoDB Overview' '. You can pass any number of key, value pairs
in find clause.

OR in MongoDB

Syntax

To query documents based on the OR condition, you need to use $or keyword. Following

is the basic syntax of OR −

>db.mycol.find(

 {

 $or: [

 {key1: value1}, {key2:value2}

]

 }

).pretty()

Example

Following example will show all the tutorials written by 'tutorials point' or whose title is
'MongoDB Overview'.

>db.mycol.find({$or:[{"by":"tutorials point"},{"title": "MongoDB
Overview"}]}).pretty()

{

 "_id": ObjectId(7df78ad8902c),

 "title": "MongoDB Overview",

 "description": "MongoDB is no sql database",

 "by": "tutorials point",

 "url": "http://www.tutorialspoint.com",

 "tags": ["mongodb", "database", "NoSQL"],

 "likes": "100" } >

MongoDB

23

Using AND and OR Together

Example

The following example will show the documents that have likes greater than 100 and

whose title is either 'MongoDB Overview' or by is 'tutorials point'. Equivalent SQL where

clause is 'where likes>10 AND (by = 'tutorials point' OR title = 'MongoDB
Overview')'

>db.mycol.find({"likes": {$gt:10}, $or: [{"by": "tutorials point"},

 {"title": "MongoDB Overview"}]}).pretty()

{

 "_id": ObjectId(7df78ad8902c),

 "title": "MongoDB Overview",

 "description": "MongoDB is no sql database",

 "by": "tutorials point",

 "url": "http://www.tutorialspoint.com",

 "tags": ["mongodb", "database", "NoSQL"],

 "likes": "100" }

>

MongoDB

24

MongoDB's update() and save() methods are used to update document into a collection.

The update() method updates the values in the existing document while the save() method

replaces the existing document with the document passed in save() method.

MongoDB Update() Method

The update() method updates the values in the existing document.

Syntax

The basic syntax of update() method is as follows:

>db.COLLECTION_NAME.update(SELECTIOIN_CRITERIA, UPDATED_DATA)

Example

Consider the mycol collection has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will set the new title 'New MongoDB Tutorial' of the documents whose
title is 'MongoDB Overview'.

>db.mycol.update({'title':'MongoDB Overview'},{$set:{'title':'New MongoDB
Tutorial'}})

>db.mycol.find()

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"New MongoDB Tutorial"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

>

By default, MongoDB will update only a single document. To update multiple documents,
you need to set a parameter 'multi' to true.

>db.mycol.update({'title':'MongoDB Overview'},

 {$set:{'title':'New MongoDB Tutorial'}},{multi:true})

12. MongoDB ─ Update Document

MongoDB

25

MongoDB Save() Method

The save() method replaces the existing document with the new document passed in the
save() method.

Syntax

The basic syntax of MongoDB save() method is −

>db.COLLECTION_NAME.save({_id:ObjectId(),NEW_DATA})

Example

Following example will replace the document with the _id '5983548781331adf45ec7'.

>db.mycol.save(

 {

 "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point New
Topic",

 "by":"Tutorials Point"

 }

)

>db.mycol.find()

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"Tutorials Point New Topic",

 "by":"Tutorials Point"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

>

MongoDB

26

In this chapter, we will learn how to delete a document using MongoDB.

The remove() Method

MongoDB's remove() method is used to remove a document from the collection.

remove() method accepts two parameters. One is deletion criteria and second is justOne
flag.

 deletion criteria: (Optional) deletion criteria according to documents will be

removed.

 justOne: (Optional) if set to true or 1, then remove only one document.

Syntax

Basic syntax of remove() method is as follows:

>db.COLLECTION_NAME.remove(DELLETION_CRITTERIA)

Example

Consider the mycol collection has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will remove all the documents whose title is 'MongoDB Overview'.

>db.mycol.remove({'title':'MongoDB Overview'})

>db.mycol.find()

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

>

13. MongoDB ─ Delete Document

MongoDB

27

Remove Only One

If there are multiple records and you want to delete only the first record, then set
justOne parameter in remove() method.

>db.COLLECTION_NAME.remove(DELETION_CRITERIA,1)

Remove All Documents

If you don't specify deletion criteria, then MongoDB will delete whole documents from the
collection. This is equivalent of SQL's truncate command.

>db.mycol.remove()

>db.mycol.find()

>

MongoDB

28

In MongoDB, projection means selecting only the necessary data rather than selecting

whole of the data of a document. If a document has 5 fields and you need to show only 3,

then select only 3 fields from them.

The find() Method

MongoDB's find() method, explained in MongoDB Query Document accepts second

optional parameter that is list of fields that you want to retrieve. In MongoDB, when you

execute find() method, then it displays all fields of a document. To limit this, you need to

set a list of fields with value 1 or 0. 1 is used to show the field while 0 is used to hide the
fields.

Syntax

The basic syntax of find() method with projection is as follows:

>db.COLLECTION_NAME.find({},{KEY:1})

Example

Consider the collection mycol has the following data

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will display the title of the document while querying the document.

>db.mycol.find({},{"title":1,_id:0})

{"title":"MongoDB Overview"}

{"title":"NoSQL Overview"}

{"title":"Tutorials Point Overview"}

>

Please note _id field is always displayed while executing find() method, if you don't want

this field, then you need to set it as 0.

14. MongoDB ─ Projection

http://www.tutorialspoint.com/mongodb/mongodb_query_document.htm

MongoDB

29

In this chapter, we will learn how to limit records using MongoDB.

The Limit() Method

To limit the records in MongoDB, you need to use limit() method. The method accepts

one number type argument, which is the number of documents that you want to be
displayed.

Syntax

The basic syntax of limit() method is as follows:

>db.COLLECTION_NAME.find().limit(NUMBER)

Example

Consider the collection myycol has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will display only two documents while querying the document.

>db.mycol.find({},{"title":1,_id:0}).limit(2)

{"title":"MongoDB Overview"}

{"title":"NoSQL Overview"}

>

If you don't specify the number argument in limit() method then it will display all
documents from the collection.

MongoDB Skip() Method

Apart from limit() method, there is one more method skip() which also accepts number
type argument and is used to skip the number of documents.

Syntax

The basic syntax of skip() method is as follows:

>db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)

15. MongoDB ─ Limit Records

MongoDB

30

Example

Following example will display only the second document.

>db.mycol.find({},{"title":1,_id:0}).limit(1).skip(1)

{"title":"NoSQL Overview"}

>

Please note, the default value in skip() method is 0.

MongoDB

31

In this chapter, we will learn how to sort records in MongoDB.

The sort() Method

To sort documents in MongoDB, you need to use sort() method. The method accepts a

document containing a list of fields along with their sorting order. To specify sorting order
1 and -1 are used. 1 is used for ascending order while -1 is used for descending order.

Syntax

The basic syntax of sort() method is as follows:

>db.COLLECTION_NAME.find().sort({KEY:1})

Example

Consider the collection myycol has the following data.

{ "_id" : ObjectId(5983548781331adf45ec5), "title":"MongoDB Overview"}

{ "_id" : ObjectId(5983548781331adf45ec6), "title":"NoSQL Overview"}

{ "_id" : ObjectId(5983548781331adf45ec7), "title":"Tutorials Point Overview"}

Following example will display the documents sorted by title in the descending order.

>db.mycol.find({},{"title":1,_id:0}).sort({"title":-1})

{"title":"Tutorials Point Overview"}

{"title":"NoSQL Overview"}

{"title":"MongoDB Overview"}

>

Please note, if you don't specify the sorting preference, then sort() method will display
the documents in ascending order.

16. MongoDB ─ Sort Records

MongoDB

32

Indexes support the efficient resolution of queries. Without indexes, MongoDB must scan

every document of a collection to select those documents that match the query statement.

This scan is highly inefficient and require MongoDB to process a large volume of data.

Indexes are special data structures, that store a small portion of the data set in an easy-

to-traverse form. The index stores the value of a specific field or set of fields, ordered by
the value of the field as specified in the index.

The ensureIndex() Method

To create an index you need to use ensureIndex() method of MongoDB.

Syntax

The basic syntax of ensureIndex() method is as follows().

>db.COLLECTION_NAME.ensureIndex({KEY:1})

Here key is the name of the file on which you want to create index and 1 is for ascending

order. To create index in descending order you need to use -1.

Example

>db.mycol.ensureIndex({"title":1})

>

In ensureIndex() method you can pass multiple fields, to create index on multiple fields.

>db.mycol.ensureIndex({"title":1,"description":-1})

>

ensureIndex() method also accepts list of options (which are optional). Following is the
list:

Parameter Type Description

background Boolean

Builds the index in the background so that

building an index does not block other database

activities. Specify true to build in the

background. The default value is false.

unique Boolean

Creates a unique index so that the collection will

not accept insertion of documents where the

index key or keys match an existing value in the

index. Specify true to create a unique index.

The default value is false.

17. MongoDB ─ Indexing

MongoDB

33

name String

The name of the index. If unspecified, MongoDB

generates an index name by concatenating the

names of the indexed fields and the sort order.

dropDups Boolean

Creates a unique index on a field that may have

duplicates. MongoDB indexes only the first

occurrence of a key and removes all documents

from the collection that contain subsequent

occurrences of that key. Specify true to create

unique index. The default value is false.

sparse Boolean

If true, the index only references documents

with the specified field. These indexes use less

space but behave differently in some situations

(particularly sorts). The default value is false.

expireAfterSeconds Integer

Specifies a value, in seconds, as a TTL to control

how long MongoDB retains documents in this

collection.

v Index Version

The index version number. The default index

version depends on the version of MongoDB

running when creating the index.

weights Document

The weight is a number ranging from 1 to

99,999 and denotes the significance of the field

relative to the other indexed fields in terms of

the score.

default_language String

For a text index, the language that determines

the list of stop words and the rules for the

stemmer and tokenizer. The default value is

english.

language_override String

For a text index, specify the name of the field

in the document that contains, the language to

override the default language. The default value

is language.

MongoDB

34

Aggregations operations process data records and return computed results. Aggregation

operations group values from multiple documents together, and can perform a variety of

operations on the grouped data to return a single result. In SQL count(*) and with group
by is an equivalent of mongodb aggregation.

The aggregate() Method

For the aggregation in MongoDB, you should use aggregate() method.

Syntax

Basic syntax of aggregate() method is as follows:

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

Example

In the collection you have the following data:

{

 _id: ObjectId(7df78ad8902c)

 title: 'MongoDB Overview',

 description: 'MongoDB is no sql database',

 by_user: 'tutorials point',

 url: 'http://www.tutorialspoint.com',

 tags: ['mongodb', 'database', 'NoSQL'],

 likes: 100

},

{

 _id: ObjectId(7df78ad8902d)

 title: 'NoSQL Overview',

 description: 'No sql database is very fast',

 by_user: 'tutorials point',

 url: 'http://www.tutorialspoint.com',

 tags: ['mongodb', 'database', 'NoSQL'],

 likes: 10

},

{

 _id: ObjectId(7df78ad8902e)

18. MongoDB ─ Aggregation

MongoDB

35

 title: 'Neo4j Overview',

 description: 'Neo4j is no sql database',

 by_user: 'Neo4j',

 url: 'http://www.neo4j.com',

 tags: ['neo4j', 'database', 'NoSQL'],

 likes: 750

},

Now from the above collection, if you want to display a list stating how many tutorials are

written by each user, then you will use the following aggregate() method:

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum :
1}}}])

{

 "result" : [

 {

 "_id" : "tutorials point",

 "num_tutorial" : 2

 },

 {

 "_id" : "Neo4j",

 "num_tutorial" : 1

 }

],

 "ok" : 1

}

>

Sql equivalent query for the above use case will be select by_user, count(*) from
mycol group by by_user.

In the above example, we have grouped documents by field by_user and on each

occurrence of by_user previous value of sum is incremented. Following is a list of available
aggregation expressions.

Expression Description Example

$sum
Sums up the defined value from all

documents in the collection.

db.mycol.aggregate([{$group

: {_id : "$by_user",

num_tutorial : {$sum :

"$likes"}}}])

MongoDB

36

$avg
Calculates the average of all given values

from all documents in the collection.

db.mycol.aggregate([{$group

: {_id : "$by_user",

num_tutorial : {$avg :

"$likes"}}}])

$min

Gets the minimum of the corresponding

values from all documents in the

collection.

db.mycol.aggregate([{$group

: {_id : "$by_user",

num_tutorial : {$min :

"$likes"}}}])

$max

Gets the maximum of the corresponding

values from all documents in the

collection.

db.mycol.aggregate([{$group

: {_id : "$by_user",

num_tutorial : {$max :

"$likes"}}}])

$push
Inserts the value to an array in the

resulting document.

db.mycol.aggregate([{$group

: {_id : "$by_user", url :

{$push: "$url"}}}])

$addToSet

Inserts the value to an array in the

resulting document but does not create

duplicates.

db.mycol.aggregate([{$group

: {_id : "$by_user", url :

{$addToSet : "$url"}}}])

$first

Gets the first document from the source

documents according to the grouping.

Typically this makes only sense together

with some previously applied “$sort”-

stage.

db.mycol.aggregate([{$group

: {_id : "$by_user", first_url

: {$first : "$url"}}}])

$last

Gets the last document from the source

documents according to the grouping.

Typically this makes only sense together

with some previously applied “$sort”-

stage.

db.mycol.aggregate([{$group

: {_id : "$by_user", last_url :

{$last : "$url"}}}])

Pipeline Concept

In UNIX command, shell pipeline means the possibility to execute an operation on some

input and use the output as the input for the next command and so on. MongoDB also

supports same concept in aggregation framework. There is a set of possible stages and

each of those is taken as a set of documents as an input and produces a resulting set of

documents (or the final resulting JSON document at the end of the pipeline). This can then
in turn be used for the next stage and so on.

Following are the possible stages in aggregation framework:

 $project: Used to select some specific fields from a collection.

 $match: This is a filtering operation and thus this can reduce the amount of

documents that are given as input to the next stage.

MongoDB

37

 $group: This does the actual aggregation as discussed above.

 $sort: Sorts the documents.

 $skip: With this, it is possible to skip forward in the list of documents for a given

amount of documents.

 $limit: This limits the amount of documents to look at, by the given number

starting from the current positions.

 $unwind: This is used to unwind document that are using arrays. When using an

array, the data is kind of pre-joined and this operation will be undone with this to

have individual documents again. Thus with this stage we will increase the amount
of documents for the next stage.

MongoDB

38

Replication is the process of synchronizing data across multiple servers. Replication

provides redundancy and increases data availability with multiple copies of data on

different database servers. Replication protects a database from the loss of a single server.

Replication also allows you to recover from hardware failure and service interruptions.

With additional copies of the data, you can dedicate one to disaster recovery, reporting,
or backup.

Why Replication?

 To keep your data safe

 High (24*7) availability of data

 Disaster recovery

 No downtime for maintenance (like backups, index rebuilds, compaction)

 Read scaling (extra copies to read from)

 Replica set is transparent to the application

How Replication Works in MongoDB

MongoDB achieves replication by the use of replica set. A replica set is a group

of mongod instances that host the same data set. In a replica, one node is primary node

that receives all write operations. All other instances, such as secondaries, apply

operations from the primary so that they have the same data set. Replica set can have
only one primary node.

 Replica set is a group of two or more nodes (generally minimum 3 nodes are

required).

 In a replica set, one node is primary node and remaining nodes are secondary.

 All data replicates from primary to secondary node.

 At the time of automatic failover or maintenance, election establishes for primary

and a new primary node is elected.

 After the recovery of failed node, it again joins the replica set and works as a
secondary node.

A typical diagram of MongoDB replication is shown in which client application always

interact with the primary node and the primary node then replicates the data to the

secondary nodes.

19. MongoDB ─ Replication

MongoDB

39

Replica Set Features

 A cluster of N nodes

 Any one node can be primary

 All write operations go to primary

 Automatic failover

 Automatic recovery

 Consensus election of primary

Set Up a Replica Set

In this tutorial, we will convert standalone MongoDB instance to a replica set. To convert
to replica set, following are the steps:

 Shutdown already running MongoDB server.

 Start the MongoDB server by specifying -- replSet option. Following is the basic

syntax of --replSet:

mongod --port "PORT" --dbpath "YOUR_DB_DATA_PATH" --replSet
"REPLICA_SET_INSTANCE_NAME"

MongoDB

40

Example

mongod --port 27017 --dbpath "D:\set up\mongodb\data" --replSet rs0

 It will start a mongod instance with the name rs0, on port 27017.

 Now start the command prompt and connect to this mongod instance.

 In Mongo client, issue the command rs.initiate() to initiate a new replica set.

 To check the replica set configuration, issue the command rs.conf(). To check the
status of replica set issue the command rs.status().

Add Members to Replica Set

To add members to replica set, start mongod instances on multiple machines. Now start
a mongo client and issue a command rs.add().

Syntax

The basic syntax of rs.add() command is as follows:

>rs.add(HOST_NAME:PORT)

Example

Suppose your mongod instance name is mongod1.net and it is running on port 27017.
To add this instance to replica set, issue the command rs.add() in Mongo client.

>rs.add("mongod1.net:27017")

>

You can add mongod instance to replica set only when you are connected to primary node.

To check whether you are connected to primary or not, issue the
command db.isMaster() in Mongo client.

MongoDB

41

Sharding is the process of storing data records across multiple machines and it is

MongoDB's approach to meeting the demands of data growth. As the size of the data

increases, a single machine may not be sufficient to store the data nor provide an

acceptable read and write throughput. Sharding solves the problem with horizontal scaling.

With sharding, you add more machines to support data growth and the demands of read
and write operations.

Why Sharding?

 In replication, all writes go to master node

 Latency sensitive queries still go to master

 Single replica set has limitation of 12 nodes

 Memory can't be large enough when active dataset is big

 Local disk is not big enough

 Vertical scaling is too expensive

Sharding in MongoDB
The following diagram shows the sharding in MongoDB using sharded cluster.

20. MongoDB ─ Sharding

MongoDB

42

In the following diagram, there are three main components:

 Shards: Shards are used to store data. They provide high availability and data

consistency. In production environment, each shard is a separate replica set.

 Config Servers: Config servers store the cluster's metadata. This data contains a

mapping of the cluster's data set to the shards. The query router uses this metadata

to target operations to specific shards. In production environment, sharded clusters

have exactly 3 config servers.

 Query Routers: Query routers are basically mongo instances, interface with client

applications and direct operations to the appropriate shard. The query router

processes and targets the operations to shards and then returns results to the

clients. A sharded cluster can contain more than one query router to divide the

client request load. A client sends requests to one query router. Generally, a

sharded cluster have many query routers.

MongoDB

43

In this chapter, we will see how to create a backup in MongoDB.

Dump MongoDB Data

To create backup of database in MongoDB, you should use mongodumpcommand. This

command will dump the entire data of your server into the dump directory. There are

many options available by which you can limit the amount of data or create backup of your
remote server.

Syntax

The basic syntax of mongodump command is as follows:

>mongodump

Example

Start your mongod server. Assuming that your mongod server is running on the localhost

and port 27017, open a command prompt and go to the bin directory of your mongodb
instance and type the command mongodump

Consider the mycol collection has the following data.

>mongodump

The command will connect to the server running at 127.0.0.1 and port 27017 and back
all data of the server to directory /bin/dump/. Following is the output of the command:

21. MongoDB ─ Create Backup

MongoDB

44

Following is a list of available options that can be used with the mongodump command.

This command will backup only specified database at specified path.

Syntax Description Example

mongodump --host

HOST_NAME --port

PORT_NUMBER

This command will backup all

databases of specified mongod

instance

mongodump --host

tutorialspoint.com --

port 27017

mongodump --dbpath

DB_PATH --out

BACKUP_DIRECTORY

mongodump --dbpath

/data/db/ --out

/data/backup/

mongodump --collection

COLLECTION --db DB_NAME

This command will backup only

specified collection of specified

database.

mongodump --

collection mycol --db

test

Restore Data

To restore backup data MongoDB's mongorestore command is used. This command

restores all of the data from the backup directory.

Syntax

The basic syntax of mongorestore command is:

>mongorestore

Following is the output of the command:

MongoDB

45

When you are preparing a MongoDB deployment, you should try to understand how your

application is going to hold up in production. It’s a good idea to develop a consistent,

repeatable approach to managing your deployment environment so that you can minimize
any surprises once you’re in production.

The best approach incorporates prototyping your setup, conducting load testing,

monitoring key metrics, and using that information to scale your setup. The key part of

the approach is to proactively monitor your entire system - this will help you understand

how your production system will hold up before deploying, and determine where you will

need to add capacity. Having insight into potential spikes in your memory usage, for
example, could help put out a write-lock fire before it starts.

To monitor your deployment, MongoDB provides some of the following commands:

mongostat

This command checks the status of all running mongod instances and return counters of

database operations. These counters include inserts, queries, updates, deletes, and

cursors. Command also shows when you’re hitting page faults, and showcase your lock

percentage. This means that you're running low on memory, hitting write capacity or have
some performance issue.

To run the command, start your mongod instance. In another command prompt, go

to bin directory of your mongodb installation and type mongostat.

D:\set up\mongodb\bin>mongostat

22. MongoDB ─ Deployment

MongoDB

46

Following is the output of the command:

mongotop

This command tracks and reports the read and write activity of MongoDB instance on a

collection basis. By default, mongotop returns information in each second, which you can

change it accordingly. You should check that this read and write activity matches your

application intention, and you’re not firing too many writes to the database at a time,

reading too frequently from a disk, or are exceeding your working set size.

To run the command, start your mongod instance. In another command prompt, go

to bin directory of your mongodb installation and type mongotop.

D:\set up\mongodb\bin>mongotop

MongoDB

47

Following is the output of the command:

To change mongotop command to return information less frequently, specify a specific
number after the mongotop command.

D:\set up\mongodb\bin>mongotop 30

The above example will return values every 30 seconds.

Apart from the MongoDB tools, 10gen provides a free, hosted monitoring service,

MongoDB Management Service (MMS), that provides a dashboard and gives you a view of
the metrics from your entire cluster.

MongoDB

48

In this chapter, we will learn how to set up MongoDB JDBC driver.

Installation

Before you start using MongoDB in your Java programs, you need to make sure that you

have MongoDB JDBC driver and Java set up on the machine. You can check Java tutorial

for Java installation on your machine. Now, let us check how to set up MongoDB JDBC
driver.

 You need to download the jar from the path Download mongo.jar. Make sure to

download the latest release of it.

 You need to include the mongo.jar into your classpath.

Connect to Database

To connect database, you need to specify the database name, if the database doesn't exist
then MongoDB creates it automatically.

Following is the code snippet to connect to the database:

import com.mongodb.client.MongoDatabase;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class ConnectToDB {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 System.out.println("Credentials ::"+ credential);

 }

}

23. MongoDB ─ Java

https://github.com/mongodb/mongo-java-driver/downloads

MongoDB

49

Now, let's compile and run the above program to create our database myDb as shown
below.

$javac ConnectToDB.java

$java ConnectToDB

On executing, the above program gives you the following output.

Connected to the database successfully

Credentials ::MongoCredential{mechanism=null, userName='sampleUser',
source='myDb', password=<hidden>, mechanismProperties={}}

Create a Collection

To create a collection, createCollection() method of com.mongodb.client.MongoDatabase
class is used.

Following is the code snippet to create a collection −

import com.mongodb.client.MongoDatabase;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class CreatingCollection {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 //Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 //Creating a collection

 database.createCollection("sampleCollection");

 System.out.println("Collection created successfully");

 }

}

MongoDB

50

On compiling, the above program gives you the following result −

Connected to the database successfully

Collection created successfully

Getting/Selecting a Collection

To get/select a collection from the database, getCollection() method of

com.mongodb.client.MongoDatabase class is used.

Following is the program to get/select a collection −

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class selectingCollection {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 // Creating a collection

 System.out.println("Collection created successfully");

 // Retieving a collection

 MongoCollection<Document> collection = database.getCollection("myCollection");

 System.out.println("Collection myCollection selected successfully");

 }
}

MongoDB

51

On compiling, the above program gives you the following result −

Connected to the database successfully

Collection created successfully

Collection myCollection selected successfully

Insert a Document

To insert a document into MongoDB, insert() method of com.mongodb.client.MongoCollection
class is used.

Following is the code snippet to insert a document −

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class InsertingDocument {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 // Retrieving a collection

 MongoCollection<Document> collection = database.getCollection("sampleCollection");

 System.out.println("Collection sampleCollection selected successfully");

 Document document = new Document("title", "MongoDB")

 .append("id", 1)

MongoDB

52

 .append("description", "database")

 .append("likes", 100)

 .append("url", "http://www.tutorialspoint.com/mongodb/")

 .append("by", "tutorials point");

 collection.insertOne(document);

 System.out.println("Document inserted successfully");

 }

}

On compiling, the above program gives you the following result −

Connected to the database successfully

Collection sampleCollection selected successfully

Document inserted successfully

Retrieve All Documents

To select all documents from the collection, find() method of

com.mongodb.client.MongoCollection class is used. This method returns a cursor, so
you need to iterate this cursor.

Following is the program to select all documents −

import com.mongodb.client.FindIterable;

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import java.util.Iterator;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class RetrievingAllDocuments {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

MongoDB

53

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 // Retrieving a collection

 MongoCollection<Document> collection =
database.getCollection("sampleCollection");

 System.out.println("Collection sampleCollection selected successfully");

 // Getting the iterable object

 FindIterable<Document> iterDoc = collection.find();

 int i = 1;

 // Getting the iterator

 Iterator it = iterDoc.iterator();

 while (it.hasNext()) {

 System.out.println(it.next());

 i++;

 }

 }

}

On compiling, the above program gives you the following result –

Document{{_id=5967745223993a32646baab8, title=MongoDB, id=1,
description=database, likes=100, url=http://www.tutorialspoint.com/mongodb/,
by=tutorials point}}

Document{{_id=7452239959673a32646baab8, title=RethinkDB, id=2,
description=database, likes=200, url=http://www.tutorialspoint.com/rethinkdb/,
by=tutorials point}}

MongoDB

54

Update Document

To update a document from the collection, updateOne() method of
com.mongodb.client.MongoCollection class is used.

Following is the program to select the first document –

import com.mongodb.client.FindIterable;

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import com.mongodb.client.model.Filters;

import com.mongodb.client.model.Updates;

import java.util.Iterator;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class UpdatingDocuments {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 // Retrieving a collection

 MongoCollection<Document> collection = database.getCollection("sampleCollection");

 System.out.println("Collection myCollection selected successfully");

 collection.updateOne(Filters.eq("id", 1), Updates.set("likes", 150));

 System.out.println("Document update successfully...");

 // Retrieving the documents after updation

 // Getting the iterable object

MongoDB

55

 FindIterable<Document> iterDoc = collection.find();

 int i = 1;

 // Getting the iterator

 Iterator it = iterDoc.iterator();

 while (it.hasNext()) {

 System.out.println(it.next());

 i++;

 }

 }

}

On compiling, the above program gives you the following result −

Document update successfully...

Document{{_id=5967745223993a32646baab8, title=MongoDB, id=1,
description=database, likes=150, url=http://www.tutorialspoint.com/mongodb/,
by=tutorials point}}

Delete a Document

To delete a document from the collection, you need to use the deleteOne() method of
the com.mongodb.client.MongoCollection class.

Following is the program to delete a document –

import com.mongodb.client.FindIterable;

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import com.mongodb.client.model.Filters;

import java.util.Iterator;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class DeletingDocuments {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

MongoDB

56

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 // Retrieving a collection

 MongoCollection<Document> collection = database.getCollection("sampleCollection");

 System.out.println("Collection sampleCollection selected successfully");

 // Deleting the documents

 collection.deleteOne(Filters.eq("id", 1));

 System.out.println("Document deleted successfully...");

 // Retrieving the documents after updation

 // Getting the iterable object

 FindIterable<Document> iterDoc = collection.find();

 int i = 1;

 // Getting the iterator

 Iterator it = iterDoc.iterator();

 while (it.hasNext()) {

 System.out.println("Inserted Document: "+i);

 System.out.println(it.next());

 i++;

 }

 }

}

On compiling, the above program gives you the following result −

Connected to the database successfully

Collection sampleCollection selected successfully

Document deleted successfully...

MongoDB

57

Dropping a Collection

To drop a collection from a database, you need to use the drop() method of the
com.mongodb.client.MongoCollection class.

Following is the program to delete a collection –

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoDatabase;

import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class DropingCollection {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 // Creating a collection

 System.out.println("Collections created successfully");

 // Retieving a collection

 MongoCollection<Document> collection = database.getCollection("sampleCollection");

 // Dropping a Collection

 collection.drop();

 System.out.println("Collection dropped successfully");

MongoDB

58

 }

}

On compiling, the above program gives you the following result –

Connected to the database successfully

Collection sampleCollection selected successfully

Collection dropped successfully

Listing All the Collections

To list all the collections in a database, you need to use the

listCollectionNames() method of the com.mongodb.client.MongoDatabase class.

Following is the program to list all the collections of a database –

import com.mongodb.client.MongoDatabase;

import com.mongodb.MongoClient;

import com.mongodb.MongoCredential;

public class ListOfCollection {

 public static void main(String args[]) {

 // Creating a Mongo client

 MongoClient mongo = new MongoClient("localhost" , 27017);

 // Creating Credentials

 MongoCredential credential;

 credential = MongoCredential.createCredential("sampleUser", "myDb",
"password".toCharArray());

 System.out.println("Connected to the database successfully");

 // Accessing the database

 MongoDatabase database = mongo.getDatabase("myDb");

 System.out.println("Collection created successfully");

 for (String name : database.listCollectionNames()) {

 System.out.println(name);

 }

 }
}

MongoDB

59

On compiling, the above program gives you the following result –

Connected to the database successfully

Collection created successfully

myCollection

myCollection1

myCollection5

Remaining MongoDB methods save(), limit(), skip(), sort() etc. work same as
explained in the subsequent tutorial.

MongoDB

60

To use MongoDB with PHP, you need to use MongoDB PHP driver. Download the driver

from the url Download PHP Driver. Make sure to download the latest release of it. Now

unzip the archive and put php_mongo.dll in your PHP extension directory ("ext" by default)
and add the following line to your php.ini file −

extension = php_mongo.dll

Make a Connection and Select a Database

To make a connection, you need to specify the database name, if the database doesn't
exist then MongoDB creates it automatically.

Following is the code snippet to connect to the database −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

?>

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Create a Collection

Following is the code snippet to create a collection −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

24. MongoDB ─ PHP

https://s3.amazonaws.com/drivers.mongodb.org/php/index.html

MongoDB

61

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->createCollection("mycol");

 echo "Collection created successfully";

?>

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection created successfully

Insert a Document

To insert a document into MongoDB, insert() method is used.

Following is the code snippet to insert a document −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected successfully";

 $document = array(

 "title" => "MongoDB",

 "description" => "database",

 "likes" => 100,

 "url" => "http://www.tutorialspoint.com/mongodb/",

 "by", "tutorials point"

);

 $collection->insert($document);

 echo "Document inserted successfully";

?>

MongoDB

62

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected successfully

Document inserted successfully

Find All Documents

To select all documents from the collection, find() method is used.

Following is the code snippet to select all documents −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected successfully";

 $cursor = $collection->find();

 // iterate cursor to display title of documents

 foreach ($cursor as $document) {

 echo $document["title"] . "\n";

 }

?>

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected successfully

{

 "title": "MongoDB"

}

MongoDB

63

Update a Document

To update a document, you need to use the update() method.

In the following example, we will update the title of inserted document to MongoDB
Tutorial. Following is the code snippet to update a document −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected succsessfully";

 // now update the document

 $collection->update(array("title"=>"MongoDB"),

 array('$set'=>array("title"=>"MongoDB Tutorial")));

 echo "Document updated successfully";

 // now display the updated document

 $cursor = $collection->find();

 // iterate cursor to display title of documents

 echo "Updated document";

 foreach ($cursor as $document) {

 echo $document["title"] . "\n";

 }

?>

MongoDB

64

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected succsessfully

Document updated successfully

Updated document

{

 "title": "MongoDB Tutorial"

}

Delete a Document

To delete a document, you need to use remove() method.

In the following example, we will remove the documents that has the title MongoDB
Tutorial. Following is the code snippet to delete a document −

<?php

 // connect to mongodb

 $m = new MongoClient();

 echo "Connection to database successfully";

 // select a database

 $db = $m->mydb;

 echo "Database mydb selected";

 $collection = $db->mycol;

 echo "Collection selected succsessfully";

 // now remove the document

 $collection->remove(array("title"=>"MongoDB Tutorial"),false);

 echo "Documents deleted successfully";

 // now display the available documents

 $cursor = $collection->find();

 // iterate cursor to display title of documents

 echo "Updated document";

 foreach ($cursor as $document) {

 echo $document["title"] . "\n"; }

?>

MongoDB

65

When the program is executed, it will produce the following result −

Connection to database successfully

Database mydb selected

Collection selected succsessfully

Documents deleted successfully

In the above example, the second parameter is boolean type and used for justOne field
of remove() method.

Remaining MongoDB methods findOne(), save(), limit(), skip(), sort() etc. works
same as explained above.

MongoDB

66

Advanced MongoDB

MongoDB

67

Relationships in MongoDB represent how various documents are logically related to each

other. Relationships can be modeled via Embedded and Referenced approaches. Such

relationships can be either 1:1, 1:N, N:1 or N:N.

Let us consider the case of storing addresses for users. So, one user can have multiple

addresses making this a 1:N relationship.

Following is the sample document structure of user document −

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "name": "Tom Hanks",

 "contact": "987654321",

 "dob": "01-01-1991"

}

Following is the sample document structure of address document −

{

 "_id":ObjectId("52ffc4a5d85242602e000000"),

 "building": "22 A, Indiana Apt",

 "pincode": 123456,

 "city": "Los Angeles",

 "state": "California"

}

Modeling Embedded Relationships

In the embedded approach, we will embed the address document inside the user
document.

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin",

 "address": [

 {

 "building": "22 A, Indiana Apt",

 "pincode": 123456,

25. MongoDB ─ Relationships

MongoDB

68

 "city": "Los Angeles",

 "state": "California"

 },

 {

 "building": "170 A, Acropolis Apt",

 "pincode": 456789,

 "city": "Chicago",

 "state": "Illinois"

 }

]

}

This approach maintains all the related data in a single document, which makes it easy to
retrieve and maintain. The whole document can be retrieved in a single query such as −

>db.users.findOne({"name":"Tom Benzamin"},{"address":1})

Note that in the above query, db and users are the database and collection respectively.

The drawback is that if the embedded document keeps on growing too much in size, it can
impact the read/write performance.

Modeling Referenced Relationships

This is the approach of designing normalized relationship. In this approach, both the user

and address documents will be maintained separately but the user document will contain
a field that will reference the address document's id field.

{

 "_id":ObjectId("52ffc33cd85242f436000001"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin",

 "address_ids": [

 ObjectId("52ffc4a5d85242602e000000"),

 ObjectId("52ffc4a5d85242602e000001")

]}

MongoDB

69

As shown above, the user document contains the array field address_ids which contains

ObjectIds of corresponding addresses. Using these ObjectIds, we can query the address

documents and get address details from there. With this approach, we will need two

queries: first to fetch the address_ids fields from user document and second to fetch
these addresses from address collection.

>var result = db.users.findOne({"name":"Tom Benzamin"},{"address_ids":1})

>var addresses = db.address.find({"_id":{"$in":result["address_ids"]}})

MongoDB

70

As seen in the last chapter of MongoDB relationships, to implement a normalized database

structure in MongoDB, we use the concept of Referenced Relationships also referred to

as Manual References in which we manually store the referenced document's id inside

other document. However, in cases where a document contains references from different
collections, we can use MongoDB DBRefs.

DBRefs vs Manual References

As an example scenario, where we would use DBRefs instead of manual references,

consider a database where we are storing different types of addresses (home, office,

mailing, etc.) in different collections (address_home, address_office, address_mailing,

etc). Now, when a user collection's document references an address, it also needs to

specify which collection to look into based on the address type. In such scenarios where a

document references documents from many collections, we should use DBRefs.

Using DBRefs

There are three fields in DBRefs:

 $ref: This field specifies the collection of the referenced document

 $id: This field specifies the _id field of the referenced document

 $db: This is an optional field and contains the name of the database in which the
referenced document lies

Consider a sample user document having DBRef field address as shown in the code

snippet:

{

 "_id":ObjectId("53402597d852426020000002"),

 "address": {

 "$ref": "address_home",

 "$id": ObjectId("534009e4d852427820000002"),

 "$db": "tutorialspoint"},

 "contact": "987654321",

 "dob": "01-01-1991",

 "name": "Tom Benzamin"

}

The address DBRef field here specifies that the referenced address document lies

in address_home collection under tutorialspoint database and has an id of
534009e4d852427820000002.

26. MongoDB ─ Database References

MongoDB

71

The following code dynamically looks in the collection specified by $refparameter

(address_home in our case) for a document with id as specified by $id parameter in

DBRef.

>var user = db.users.findOne({"name":"Tom Benzamin"})

>var dbRef = user.address

>db[dbRef.$ref].findOne({"_id":(dbRef.$id)})

The above code returns the following address document present in
address_home collection:

{

 "_id" : ObjectId("534009e4d852427820000002"),

 "building" : "22 A, Indiana Apt",

 "pincode" : 123456,

 "city" : "Los Angeles",

 "state" : "California"

}

MongoDB

72

In this chapter, we will learn about covered queries.

What is a Covered Query?

As per the official MongoDB documentation, a covered query is a query in which:

 All the fields in the query are part of an index.

 All the fields returned in the query are in the same index.

Since all the fields present in the query are part of an index, MongoDB matches the query

conditions and returns the result using the same index without actually looking inside the

documents. Since indexes are present in RAM, fetching data from indexes is much faster

as compared to fetching data by scanning documents.

Using Covered Queries

To test covered queries, consider the following document in the users collection:

{

 "_id": ObjectId("53402597d852426020000002"),

 "contact": "987654321",

 "dob": "01-01-1991",

 "gender": "M",

 "name": "Tom Benzamin",

 "user_name": "tombenzamin"

}

We will first create a compound index for the users collection on the fields gender and
user_name using the following query:

>db.users.ensureIndex({gender:1,user_name:1})

Now, this index will cover the following query:

>db.users.find({gender:"M"},{user_name:1,_id:0})

That is to say that for the above query, MongoDB would not go looking into database
documents. Instead it would fetch the required data from indexed data which is very fast.

27. MongoDB ─ Covered Queries

MongoDB

73

Since our index does not include _id field, we have explicitly excluded it from result set of

our query, as MongoDB by default returns _id field in every query. So the following query

would not have been covered inside the index created above:

>db.users.find({gender:"M"},{user_name:1})

Lastly, remember that an index cannot cover a query if:

 Any of the indexed fields is an array

 Any of the indexed fields is a subdocument

MongoDB

74

Analyzing queries is a very important aspect of measuring how effective the database and
indexing design is. We will learn about the frequently used $explain and $hint queries.

Using $explain

The $explain operator provides information on the query, indexes used in a query and
other statistics. It is very useful when analyzing how well your indexes are optimized.

In the last chapter, we had already created an index for the users collection on
fields gender and user_name using the following query:

>db.users.ensureIndex({gender:1,user_name:1})

We will now use $explain on the following query:

>db.users.find({gender:"M"},{user_name:1,_id:0}).explain()

The above explain() query returns the following analyzed result:

{

 "cursor" : "BtreeCursor gender_1_user_name_1",

 "isMultiKey" : false,

 "n" : 1,

 "nscannedObjects" : 0,

 "nscanned" : 1,

 "nscannedObjectsAllPlans" : 0,

 "nscannedAllPlans" : 1,

 "scanAndOrder" : false,

 "indexOnly" : true,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 0,

 "indexBounds" : {

 "gender" : [

 [

 "M",

 "M"

]

],

 "user_name" : [

28. MongoDB ─ Analyzing Queries

MongoDB

75

 [

 {

 "$minElement" : 1

 },

 {

 "$maxElement" : 1

 }

]

]

 }

}

We will now look at the fields in this result set:

 The true value of indexOnly indicates that this query has used indexing.

 The cursor field specifies the type of cursor used. BTreeCursor type indicates that

an index was used and also gives the name of the index used. BasicCursor indicates

that a full scan was made without using any indexes.

 n indicates the number of documents matching returned.

 nscannedObjects indicates the total number of documents scanned.

 nscanned indicates the total number of documents or index entries scanned.

Using $hint

The $hint operator forces the query optimizer to use the specified index to run a query.

This is particularly useful when you want to test performance of a query with different

indexes. For example, the following query specifies the index on fields gender and
user_name to be used for this query:

>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1})

To analyze the above query using $explain:

>db.users.find({gender:"M"},{user_name:1,_id:0}).hint({gender:1,user_name:1}).e
xplain()

MongoDB

76

MongoDB does not support multi-document atomic transactions. However, it does

provide atomic operations on a single document. So if a document has hundred fields the

update statement will either update all the fields or none, hence maintaining atomicity at
the document-level.

Model Data for Atomic Operations

The recommended approach to maintain atomicity would be to keep all the related

information, which is frequently updated together in a single document using embedded

documents. This would make sure that all the updates for a single document are atomic.

Consider the following products document:

{

 "_id":1,

 "product_name": "Samsung S3",

 "category": "mobiles",

 "product_total": 5,

 "product_available": 3,

 "product_bought_by": [

 {

 "customer": "john",

 "date": "7-Jan-2014"

 },

 {

 "customer": "mark",

 "date": "8-Jan-2014"

 }

]

}

In this document, we have embedded the information of the customer who buys the

product in the product_bought_by field. Now, whenever a new customer buys the

product, we will first check if the product is still available using product_available field.

If available, we will reduce the value of product_available field as well as insert the new

customer's embedded document in the product_bought_by field. We will

use findAndModify command for this functionality because it searches and updates the
document in the same go.

29. MongoDB ─ Atomic Operations

MongoDB

77

>db.products.findAndModify({

 query:{_id:2,product_available:{$gt:0}},

 update:{

 $inc:{product_available:-1},

 $push:{product_bought_by:{customer:"rob",date:"9-Jan-2014"}}

 }

})

Our approach of embedded document and using findAndModify query makes sure that the

product purchase information is updated only if it the product is available. And the whole
of this transaction being in the same query, is atomic.

In contrast to this, consider the scenario where we may have kept the product availability

and the information on who has bought the product, separately. In this case, we will first

check if the product is available using the first query. Then in the second query we will

update the purchase information. However, it is possible that between the executions of

these two queries, some other user has purchased the product and it is no more available.

Without knowing this, our second query will update the purchase information based on the

result of our first query. This will make the database inconsistent because we have sold a
product which is not available.

MongoDB

78

Consider the following document of the users collection:

{

 "address": {

 "city": "Los Angeles",

 "state": "California",

 "pincode": "123"

 },

 "tags": [

 "music",

 "cricket",

 "blogs"

],

 "name": "Tom Benzamin"

}

The above document contains an address sub-document and a tags array.

Indexing Array Fields

Suppose we want to search user documents based on the user’s tags. For this, we will
create an index on tags array in the collection.

Creating an index on array in turn creates separate index entries for each of its fields. So

in our case when we create an index on tags array, separate indexes will be created for
its values music, cricket and blogs.

To create an index on tags array, use the following code:

>db.users.ensureIndex({"tags":1})

After creating the index, we can search on the tags field of the collection like this:

>db.users.find({tags:"cricket"})

To verify that proper indexing is used, use the following explain command:

>db.users.find({tags:"cricket"}).explain()

The above command resulted in "cursor" : "BtreeCursor tags_1" which confirms that

proper indexing is used.

30. MongoDB ─ Advanced Indexing

MongoDB

79

Indexing Sub-Document Fields

Suppose that we want to search documents based on city, state and pincode fields. Since

all these fields are part of address sub-document field, we will create an index on all the

fields of the sub-document.

For creating an index on all the three fields of the sub-document, use the following code:

>db.users.ensureIndex({"address.city":1,"address.state":1,"address.pincode":1})

Once the index is created, we can search for any of the sub-document fields utilizing this

index as follows:

>db.users.find({"address.city":"Los Angeles"})

Remember that the query expression has to follow the order of the index specified. So the

index created above would support the following queries:

>db.users.find({"address.city":"Los Angeles","address.state":"California"})

It will also support the following query:

>db.users.find({"address.city":"LosAngeles","address.state":"California","addre
ss.pincode":

MongoDB

80

In this chapter, we will learn about Indexing Limitations and its other components.

Extra Overhead

Every index occupies some space as well as causes an overhead on each insert, update

and delete. So if you rarely use your collection for read operations, it makes sense not to
use indexes.

RAM Usage

Since indexes are stored in RAM, you should make sure that the total size of the index

does not exceed the RAM limit. If the total size increases the RAM size, it will start deleting

some indexes, causing performance loss.

Query Limitations

Indexing can't be used in queries which use:

 Regular expressions or negation operators like $nin, $not, etc.

 Arithmetic operators like $mod, etc.

 $where clause

Hence, it is always advisable to check the index usage for your queries.

Index Key Limits

Starting from version 2.6, MongoDB will not create an index if the value of existing index
field exceeds the index key limit.

Inserting Documents Exceeding Index Key Limit

MongoDB will not insert any document into an indexed collection if the indexed field value

of this document exceeds the index key limit. Same is the case with mongorestore and

mongoimport utilities.

Maximum Ranges

 A collection cannot have more than 64 indexes.

 The length of the index name cannot be longer than 125 characters.

 A compound index can have maximum 31 fields indexed.

31. MongoDB ─ Indexing Limitations

MongoDB

81

We have been using MongoDB Object Id in all the previous chapters. In this chapter, we
will understand the structure of ObjectId.

An ObjectId is a 12-byte BSON type having the following structure:

 The first 4 bytes representing the seconds since the unix epoch

 The next 3 bytes are the machine identifier

 The next 2 bytes consists of process id

 The last 3 bytes are a random counter value

MongoDB uses ObjectIds as the default value of _id field of each document, which is

generated while the creation of any document. The complex combination of ObjectId
makes all the _id fields unique.

Creating New ObjectId

To generate a new ObjectId use the following code:

>newObjectId = ObjectId()

The above statement returned the following uniquely generated id:

ObjectId("5349b4ddd2781d08c09890f3")

Instead of MongoDB generating the ObjectId, you can also provide a 12-byte id:

>myObjectId = ObjectId("5349b4ddd2781d08c09890f4")

Creating Timestamp of a Document

Since the _id ObjectId by default stores the 4-byte timestamp, in most cases you do not

need to store the creation time of any document. You can fetch the creation time of a
document using getTimestamp method:

>ObjectId("5349b4ddd2781d08c09890f4").getTimestamp()

This will return the creation time of this document in ISO date format:

ISODate("2014-04-12T21:49:17Z")

Converting ObjectId to String

In some cases, you may need the value of ObjectId in a string format. To convert the
ObjectId in string, use the following code:

>newObjectId.str

32. MongoDB ─ ObjectId

MongoDB

82

The above code will return the string format of the Guid:

5349b4ddd2781d08c09890f3

MongoDB

83

As per the MongoDB documentation, MapReduce is a data processing paradigm for

condensing large volumes of data into useful aggregated results. MongoDB

uses mapReduce command for map-reduce operations. MapReduce is generally used for
processing large data sets.

MapReduce Command

Following is the syntax of the basic mapReduce command −

>db.collection.mapReduce(

 function() {emit(key,value);}, //map function

 function(key,values) {return reduceFunction}, { //reduce function

 out: collection,

 query: document,

 sort: document,

 limit: number

 }

)

The map-reduce function first queries the collection, then maps the result documents to
emit key-value pairs, which is then reduced based on the keys that have multiple values.

In the above syntax -

 map is a javascript function that maps a value with a key and emits a key-value pair

 reduce is a javascript function that reduces or groups all the documents having

the same key

 out specifies the location of the map-reduce query result

 query specifies the optional selection criteria for selecting documents

 sort specifies the optional sort criteria

 limit specifies the optional maximum number of documents to be returned

Using MapReduce

Consider the following document structure storing user posts. The document stores
user_name of the user and the status of post.

{

 "post_text": "tutorialspoint is an awesome website for tutorials",

 "user_name": "mark",

33. MongoDB ─ MapReduce

MongoDB

84

 "status":"active"

}

Now, we will use a mapReduce function on our posts collection to select all the active

posts, group them on the basis of user_name and then count the number of posts by each
user using the following code −

>db.posts.mapReduce(

 function() { emit(this.user_id,1); },

 function(key, values) {return Array.sum(values)}, {

 query:{status:"active"},

 out:"post_total"

 }

)

The above mapReduce query outputs the following result −

{

 "result" : "post_total",

 "timeMillis" : 9,

 "counts" : {

 "input" : 4,

 "emit" : 4,

 "reduce" : 2,

 "output" : 2

 },

 "ok" : 1,

}

The result shows that a total of 4 documents matched the query (status:"active"), the

map function emitted 4 documents with key-value pairs and finally the reduce function
grouped mapped documents having the same keys into 2.

To see the result of this mapReduce query, use the find operator −

>db.posts.mapReduce(

 function() { emit(this.user_id,1); },

 function(key, values) {return Array.sum(values)}, {

 query:{status:"active"},

 out:"post_total"

 }
).find()

MongoDB

85

The above query gives the following result which indicates that both users tom
and mark have two posts in active states −

{ "_id" : "tom", "value" : 2 }

{ "_id" : "mark", "value" : 2 }

In a similar manner, MapReduce queries can be used to construct large complex

aggregation queries. The use of custom Javascript functions make use of MapReduce which
is very flexible and powerful.

MongoDB

86

Starting from version 2.4, MongoDB started supporting text indexes to search inside string

content. The Text Search uses stemming techniques to look for specified words in the

string fields by dropping stemming stop words like a, an, the, etc. At present, MongoDB
supports around 15 languages.

Enabling Text Search

Initially, Text Search was an experimental feature but starting from version 2.6, the

configuration is enabled by default. But if you are using the previous version of MongoDB,

you have to enable text search with the following code:

>db.adminCommand({setParameter:true,textSearchEnabled:true})

Creating Text Index

Consider the following document under posts collection containing the post text and its
tags:

{

 "post_text": "enjoy the mongodb articles on tutorialspoint",

 "tags": [

 "mongodb",

 "tutorialspoint"

]

}

We will create a text index on post_text field so that we can search inside our posts' text:

>db.posts.ensureIndex({post_text:"text"})

Using Text Index

Now that we have created the text index on post_text field, we will search for all the posts
having the word tutorialspoint in their text.

>db.posts.find({$text:{$search:"tutorialspoint"}})

34. MongoDB ─ Text Search

MongoDB

87

The above command returned the following result documents having the word
tutorialspoint in their post text:

{

 "_id" : ObjectId("53493d14d852429c10000002"),

 "post_text" : "enjoy the mongodb articles on tutorialspoint",

 "tags" : ["mongodb", "tutorialspoint"]

}

{

 "_id" : ObjectId("53493d1fd852429c10000003"),

 "post_text" : "writing tutorials on mongodb",

 "tags" : ["mongodb", "tutorial"]

}

If you are using old versions of MongoDB, you have to use the following command:

>db.posts.runCommand("text",{search:" tutorialspoint "})

Using Text Search highly improves the search efficiency as compared to normal search.

Deleting Text Index

To delete an existing text index, first find the name of index using the following query:

>db.posts.getIndexes()

After getting the name of your index from above query, run the following command.

Here, post_text_text is the name of the index.

>db.posts.dropIndex("post_text_text")

MongoDB

88

Regular Expressions are frequently used in all languages to search for a pattern or word

in any string. MongoDB also provides functionality of regular expression for string pattern

matching using the $regex operator. MongoDB uses PCRE (Perl Compatible Regular
Expression) as regular expression language.

Unlike text search, we do not need to do any configuration or command to use regular expressions.

Consider the following document structure under posts collection containing the post text
and its tags:

{

 "post_text": "enjoy the mongodb articles on tutorialspoint",

 "tags": [

 "mongodb",

 "tutorialspoint"

]

}

Using regex Expression

The following regex query searches for all the posts containing string tutorialspoint in it:

>db.posts.find({post_text:{$regex:"tutorialspoint"}})

The same query can also be written as:

>db.posts.find({post_text:/tutorialspoint/})

Using regex Expression with Case Insensitive

To make the search case insensitive, we use the $options parameter with value $i. The

following command will look for strings having the word tutorialspoint, irrespective of
smaller or capital case:

>db.posts.find({post_text:{$regex:"tutorialspoint",$options:"$i"}})

One of the results returned from this query is the following document which contains the

word tutorialspoint in different cases:

{

 "_id" : ObjectId("53493d37d852429c10000004"),

 "post_text" : "hey! this is my post on TutorialsPoint",

 "tags" : ["tutorialspoint"]
}

35. MongoDB ─ Regular Expression

MongoDB

89

Using regex for Array Elements

We can also use the concept of regex on array field. This is particularly very important

when we implement the functionality of tags. So, if you want to search for all the posts

having tags beginning from the word tutorial (either tutorial or tutorials or tutorialpoint or
tutorialphp), you can use the following code:

>db.posts.find({tags:{$regex:"tutorial"}})

Optimizing Regular Expression Queries

 If the document fields are indexed, the query will use make use of indexed values

to match the regular expression. This makes the search very fast as compared to

the regular expression scanning the whole collection.

 If the regular expression is a prefix expression, all the matches are meant to

start with a certain string characters. For e.g., if the regex expression is ^tut, then

the query has to search for only those strings that begin with tut.

MongoDB

90

RockMongo is a MongoDB administration tool using which you can manage your server,

databases, collections, documents, indexes, and a lot more. It provides a very user-

friendly way for reading, writing, and creating documents. It is similar to PHPMyAdmin tool
for PHP and MySQL.

Downloading RockMongo

You can download the latest version of RockMongo from here:
http://rockmongo.com/downloads

Installing RockMongo

Once downloaded, you can unzip the package in your server root folder and rename the

extracted folder to rockmongo. Open any web browser and access the index.php page
from the folder rockmongo. Enter admin/admin as username/password respectively.

Working with RockMongo

We will now be looking at some basic operations that you can perform with RockMongo.

Creating New Database

To create a new database, click Databases tab. Click Create New Database. On the

next screen, provide the name of the new database and click on Create. You will see a
new database getting added in the left panel.

Creating New Collection

To create a new collection inside a database, click on that database from the left panel.

Click on the New Collection link on top. Provide the required name of the collection. Do

not worry about the other fields of Is Capped, Size and Max. Click on Create. A new
collection will be created and you will be able to see it in the left panel.

Creating New Document

To create a new document, click on the collection under which you want to add documents.

When you click on a collection, you will be able to see all the documents within that

collection listed there. To create a new document, click on the Insert link at the top. You

can enter the document's data either in JSON or array format and click on Save.

Export/Import Data

To import/export data of any collection, click on that collection and then click on

Export/Import link on the top panel. Follow the next instructions to export your data in
a zip format and then import the same zip file to import back data.

36. MongoDB ─ RockMongo

MongoDB

91

GridFS is the MongoDB specification for storing and retrieving large files such as images,

audio files, video files, etc. It is kind of a file system to store files but its data is stored

within MongoDB collections. GridFS has the capability to store files even greater than its
document size limit of 16MB.

GridFS divides a file into chunks and stores each chunk of data in a separate document,
each of maximum size 255k.

GridFS by default uses two collections fs.files and fs.chunks to store the file's metadata

and the chunks. Each chunk is identified by its unique _id ObjectId field. The fs.files severs

as a parent document. The files_id field in the fs.chunks document links the chunk to its
parent.

Following is a sample document of fs.files collection:

{

 "filename": "test.txt",

 "chunkSize": NumberInt(261120),

 "uploadDate": ISODate("2014-04-13T11:32:33.557Z"),

 "md5": "7b762939321e146569b07f72c62cca4f",

 "length": NumberInt(646)

}

The document specifies the file name, chunk size, uploaded date, and length.

Following is a sample document of fs.chunks document:

{

 "files_id": ObjectId("534a75d19f54bfec8a2fe44b"),

 "n": NumberInt(0),

 "data": "Mongo Binary Data"

}

Adding Files to GridFS

Now, we will store an mp3 file using GridFS using the put command. For this, we will use
the mongofiles.exe utility present in the bin folder of the MongoDB installation folder.

Open your command prompt, navigate to the mongofiles.exe in the bin folder of MongoDB

installation folder and type the following code:

>mongofiles.exe -d gridfs put song.mp3

Here, gridfs is the name of the database in which the file will be stored. If the database

is not present, MongoDB will automatically create a new document on the fly. Song.mp3

37. MongoDB ─ GridFS

MongoDB

92

is the name of the file uploaded. To see the file's document in database, you can use find
query:

>db.fs.files.find()

The above command returned the following document:

{

 _id: ObjectId('534a811bf8b4aa4d33fdf94d'),

 filename: "song.mp3",

 chunkSize: 261120,

 uploadDate: new Date(1397391643474), md5:
"e4f53379c909f7bed2e9d631e15c1c41",

 length: 10401959

}

We can also see all the chunks present in fs.chunks collection related to the stored file
with the following code, using the document id returned in the previous query:

>db.fs.chunks.find({files_id:ObjectId('534a811bf8b4aa4d33fdf94d')})

In my case, the query returned 40 documents meaning that the whole mp3 document was
divided in 40 chunks of data.

MongoDB

93

Capped collections are fixed-size circular collections that follow the insertion order to

support high performance for create, read, and delete operations. By circular, it means

that when the fixed size allocated to the collection is exhausted, it will start deleting the
oldest document in the collection without providing any explicit commands.

Capped collections restrict updates to the documents if the update results in increased

document size. Since capped collections store documents in the order of the disk storage,

it ensures that the document size does not increase the size allocated on the disk. Capped

collections are best for storing log information, cache data, or any other high volume data.

Creating Capped Collection

To create a capped collection, we use the normal createCollection command but
with capped option as true and specifying the maximum size of collection in bytes.

>db.createCollection("cappedLogCollection",{capped:true,size:10000})

In addition to collection size, we can also limit the number of documents in the collection
using the max parameter:

>db.createCollection("cappedLogCollection",{capped:true,size:10000,max:1000})

If you want to check whether a collection is capped or not, use the following
isCapped command:

>db.cappedLogCollection.isCapped()

If there is an existing collection which you are planning to convert to capped, you can do

it with the following code:

>db.runCommand({"convertToCapped":"posts",size:10000})

This code would convert our existing collection posts to a capped collection.

Querying Capped Collection

By default, a find query on a capped collection will display results in insertion order. But if

you want the documents to be retrieved in reverse order, use the sort command as shown
in the following code:

>db.cappedLogCollection.find().sort({$natural:-1})

38. MongoDB ─ Capped Collections

MongoDB

94

There are few other important points regarding capped collections worth knowing:

 We cannot delete documents from a capped collection.

 There are no default indexes present in a capped collection, not even on _id field.

 While inserting a new document, MongoDB does not have to actually look for a

place to accommodate new document on the disk. It can blindly insert the new

document at the tail of the collection. This makes insert operations in capped

collections very fast.

 Similarly, while reading documents MongoDB returns the documents in the same

order as present on disk. This makes the read operation very fast.

MongoDB

95

MongoDB does not have out-of-the-box auto-increment functionality, like SQL databases.

By default, it uses the 12-byte ObjectId for the _id field as the primary key to uniquely

identify the documents. However, there may be scenarios where we may want the _id field
to have some auto-incremented value other than the ObjectId.

Since this is not a default feature in MongoDB, we will programmatically achieve this
functionality by using a counters collection as suggested by the MongoDB documentation.

Using Counter Collection

Consider the following products document. We want the _id field to be an auto-

incremented integer sequence starting from 1,2,3,4 upto n.

{

 "_id":1,

 "product_name": "Apple iPhone",

 "category": "mobiles"

}

For this, create a counters collection, which will keep track of the last sequence value for
all the sequence fields.

>db.createCollection("counters")

Now, we will insert the following document in the counters collection with productid as
its key −

{

 "_id":"productid",

 "sequence_value": 0

}

The field sequence_value keeps track of the last value of the sequence.

Use the following code to insert this sequence document in the counters collection −

>db.counters.insert({_id:"productid",sequence_value:0})

39. MongoDB ─ Auto-Increment Sequence

MongoDB

96

Creating Javascript Function

Now, we will create a function getNextSequenceValue which will take the sequence

name as its input, increment the sequence number by 1 and return the updated sequence

number. In our case, the sequence name is productid.

>function getNextSequenceValue(sequenceName){

 var sequenceDocument = db.counters.findAndModify({

 query:{_id: sequenceName },

 update: {$inc:{sequence_value:1}},

 new:true

 });

 return sequenceDocument.sequence_value;

}

Using the Javascript Function

We will now use the function getNextSequenceValue while creating a new document and
assigning the returned sequence value as document's _id field.

Insert two sample documents using the following code −

>db.products.insert({

 "_id":getNextSequenceValue("productid"),

 "product_name":"Apple iPhone",

 "category":"mobiles"

})

>db.products.insert({

 "_id":getNextSequenceValue("productid"),

 "product_name":"Samsung S3",

 "category":"mobiles"

})

As you can see, we have used the getNextSequenceValue function to set value for the _id

field.

MongoDB

97

To verify the functionality, let us fetch the documents using find command −

>db.prodcuts.find()

The above query returned the following documents having the auto-incremented _id field

{ "_id" : 1, "product_name" : "Apple iPhone", "category" : "mobiles"}

{ "_id" : 2, "product_name" : "Samsung S3", "category" : "mobiles" }

