

i

About the Tutorial

This tutorial provides an introduction to HBase, the procedures to set up HBase

on Hadoop File Systems, and ways to interact with HBase shell. It also describes

how to connect to HBase using java, and how to perform basic operations on

HBase using java.

Audience

This tutorial will help professionals aspiring to make a career in Big Data

Analytics using Hadoop Framework. Software professionals, analytics

Professionals, and ETL developers are the key beneficiaries of this course.

Prerequisites

Before you start proceeding with this tutorial, we assume that you are already

aware of Hadoop's architecture and APIs, have experience in writing basic

applications using java, and have a working knowledge of any database.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ··· i

Audience ·· i

Prerequisites ·· i

Copyright & Disclaimer ·· i

Table of Contents ·· ii

1. OVERVIEW ··· 1

What is HBase? ··· 1

HBase and HDFS ·· 2

Storage Mechanism in HBase ·· 2

Column Oriented and Row Oriented ··· 3

HBase and RDBMS ·· 4

Features of HBase ··· 4

Where to Use HBase ··· 5

Applications of HBase ··· 5

HBase History ··· 5

2. ARCHITECTURE ·· 6

HBase Architecture ··· 6

3. INSTALLATION ··· 9

Pre-Installation Setup ··· 9

Installing HBase ·· 18

Starting and Stopping a Master ··· 21

Starting and Stopping Region Servers ··· 22

HBase Web Interface ·· 23

4. SHELL ·· 26

iii

HBase Shell ··· 26

General Commands··· 26

Data Definition Language ·· 26

Data Manipulation Language ·· 27

Starting HBase Shell ·· 27

5. GENERAL COMMANDS ·· 29

status ·· 29

version ·· 29

table_help ··· 29

whoami ··· 30

6. ADMIN API ·· 31

Class HBaseAdmin ··· 31

Setting the Classpath ·· 32

7. CREATE TABLE ··· 33

Creating Table ··· 33

Verifying the Creation ··· 33

Creating a Table Using java API ··· 34

8. LISTING TABLES ··· 37

list ··· 37

Listing Tables Using Java API ··· 37

9. DISABLING A TABLE ··· 40

Disable a Table ·· 40

Verification ··· 40

is_disabled ·· 40

disable_all ··· 41

iv

Disable a Table Using Java API ·· 41

10. ENABLING A TABLE ·· 45

Enable a Table ··· 45

Verification ··· 45

is_enabled ·· 46

Enable a Table Using Java API ··· 46

11. DESCRIBE AND ALTER ·· 50

describe ·· 50

alter ·· 51

Adding a Column Family Using Java API ·· 53

Deleting a Column Family Using Java API ·· 55

12. EXISTS ··· 58

exists··· 58

Verifying the Existence of Table Using Java API ··· 58

13. DROP A TABLE ··· 61

drop ·· 61

drop_all ·· 61

Deleting a Table Using Java API ··· 62

14. SHUTTING DOWN HBASE ·· 65

exit·· 65

Stopping HBase ··· 65

Stopping HBase Using Java API ··· 65

15. CLIENT API ··· 68

Class HBaseConfiguration ··· 68

Class HTable ·· 68

v

Class Put ··· 69

Class Get ··· 71

Class Delete ·· 71

Class Result ··· 73

16. CREATE DATA ·· 74

Creating Data ·· 74

Inserting Data Using Java API ·· 76

17. UPDATE DATA ··· 80

Updating Data ··· 80

Updating Data Using Java API ··· 81

18. READ DATA ··· 85

Reading Data ·· 85

Reading Data Using Java API ··· 86

19. DELETE DATA ·· 90

Deleting a Specific Cell in a Table ·· 90

Deleting All Cells in a Table ··· 90

Deleting Data Using Java API··· 91

20. HBASE SCAN ·· 95

scan ·· 95

Scanning Using Java API ·· 95

21. COUNT AND TRUNCATE ·· 98

count ·· 98

truncate ·· 98

22. HBASE SECURITY ··· 99

vi

grant ··· 99

revoke ··· 99

user_permission ··· 100

HBase

1

Since 1970, RDBMS is the solution for data storage and maintenance related

problems. After the advent of big data, companies realized the benefit of

processing big data and started opting for solutions like Hadoop.

Hadoop uses distributed file system for storing big data, and MapReduce to

process it. Hadoop excels in storing and processing of huge data of various

formats such as arbitrary, semi-, or even unstructured.

Limitations of Hadoop

Hadoop can perform only batch processing, and data will be accessed only in a

sequential manner. That means one has to search the entire dataset even for

the simplest of jobs.

A huge dataset when processed results in another huge data set, which should

also be processed sequentially. At this point, a new solution is needed to access

any point of data in a single unit of time (random access).

Hadoop Random Access Databases

Applications such as HBase, Cassandra, couchDB, Dynamo, and MongoDB are

some of the databases that store huge amounts of data and access the data in a

random manner.

What is HBase?

HBase is a distributed column-oriented database built on top of the Hadoop file

system. It is an open-source project and is horizontally scalable.

HBase is a data model that is similar to Google’s big table designed to provide

quick random access to huge amounts of structured data. It leverages the fault

tolerance provided by the Hadoop File System (HDFS).

It is a part of the Hadoop ecosystem that provides random real-time read/write

access to data in the Hadoop File System.

One can store the data in HDFS either directly or through HBase. Data consumer

reads/accesses the data in HDFS randomly using HBase. HBase sits on top of the

Hadoop File System and provides read and write access.

1. OVERVIEW

HBase

2

HBase and HDFS

HDFS HBase

HDFS is a distributed file system

suitable for storing large files.

HBase is a database built on top of the

HDFS.

HDFS does not support fast

individual record lookups.

HBase provides fast lookups for larger

tables.

It provides high latency batch

processing; no concept of batch

processing.

It provides low latency access to single

rows from billions of records (Random

access).

It provides only sequential access of

data.

HBase internally uses Hash tables and

provides random access, and it stores

the data in indexed HDFS files for faster

lookups.

Storage Mechanism in HBase

HBase is a column-oriented database and the tables in it are sorted by row.

The table schema defines only column families, which are the key value pairs. A

table have multiple column families and each column family can have any

number of columns. Subsequent column values are stored contiguously on the

disk. Each cell value of the table has a timestamp. In short, in an HBase:

HBase

3

 Table is a collection of rows.

 Row is a collection of column families.

 Column family is a collection of columns.

 Column is a collection of key value pairs.

Given below is an example schema of table in HBase.

Column Oriented and Row Oriented

Column-oriented databases are those that store data tables as sections of

columns of data, rather than as rows of data. Shortly, they will have column

families.

Row-Oriented Database Column-Oriented Database

It is suitable for Online Transaction

Process (OLTP).

It is suitable for Online Analytical

Processing (OLAP).

Such databases are designed for

small number of rows and columns.

Column-oriented databases are

designed for huge tables.

The following image shows column families in a column-oriented database:

HBase

4

HBase and RDBMS

HBase RDBMS

HBase is schema-less, it doesn't

have the concept of fixed columns

schema; defines only column

families.

An RDBMS is governed by its schema,

which describes the whole structure of

tables.

It is built for wide tables. HBase is

horizontally scalable.

It is thin and built for small tables. Hard

to scale.

No transactions are there in HBase. RDBMS is transactional.

It has de-normalized data. It will have normalized data.

It is good for semi-structured as well

as structured data.

It is good for structured data.

Features of HBase

 HBase is linearly scalable.

 It has automatic failure support.

 It provides consistent read and writes.

 It integrates with Hadoop, both as a source and a destination.

 It has easy java API for client.

 It provides data replication across clusters.

HBase

5

Where to Use HBase

 Apache HBase is used to have random, real-time read/write access to Big

Data.

 It hosts very large tables on top of clusters of commodity hardware.

 Apache HBase is a non-relational database modeled after Google's

Bigtable. Bigtable acts up on Google File System, likewise Apache HBase

works on top of Hadoop and HDFS.

Applications of HBase

 It is used whenever there is a need to write heavy applications.

 HBase is used whenever we need to provide fast random access to

available data.

 Companies such as Facebook, Twitter, Yahoo, and Adobe use HBase

internally.

HBase History

Year Event

Nov 2006 Google released the paper on BigTable.

Feb 2007 Initial HBase prototype was created as a Hadoop contribution.

Oct 2007 The first usable HBase along with Hadoop 0.15.0 was

released.

Jan 2008 HBase became the sub project of Hadoop.

Oct 2008 HBase 0.18.1 was released.

Jan 2009 HBase 0.19.0 was released.

Sept 2009 HBase 0.20.0 was released.

May 2010 HBase became Apache top-level project.

HBase

6

HBase Architecture

In HBase, tables are split into regions and are served by the region servers.

Regions are vertically divided by column families into “Stores”. Stores are saved

as files in HDFS. Shown below is the architecture of HBase.

Note: The term ‘store’ is used for regions to explain the storage structure.

HBase has three major components: the client library, a master server, and

region servers. Region servers can be added or removed as per requirement.

Master Server

The master server -

 Assigns regions to the region servers and takes the help of Apache

ZooKeeper for this task.

 Handles load balancing of the regions across region servers. It unloads

the busy servers and shifts the regions to less occupied servers.

 Maintains the state of the cluster by negotiating the load balancing.

 Is responsible for schema changes and other metadata operations such as

creation of tables and column families.

2. ARCHITECTURE

HBase

7

Regions

Regions are nothing but tables that are split up and spread across the region

servers.

Region server

The region servers have regions that -

 Communicate with the client and handle data-related operations.

 Handle read and write requests for all the regions under it.

 Decide the size of the region by following the region size thresholds.

When we take a deeper look into the region server, it contain regions and stores

as shown below:

The store contains memory store and HFiles. Memstore is just like a cache

memory. Anything that is entered into the HBase is stored here initially. Later,

the data is transferred and saved in Hfiles as blocks and the memstore is

flushed.

Zookeeper

 Zookeeper is an open-source project that provides services like

maintaining configuration information, naming, providing distributed

synchronization, etc.

 Zookeeper has ephemeral nodes representing different region servers.

Master servers use these nodes to discover available servers.

HBase

8

 In addition to availability, the nodes are also used to track server failures

or network partitions.

 Clients communicate with region servers via zookeeper.

 In pseudo and standalone modes, HBase itself will take care of zookeeper.

HBase

9

This chapter explains how HBase is installed and initially configured. Java and

Hadoop are required to proceed with HBase, so you have to download and install

java and Hadoop in your system.

Pre-Installation Setup

Before installing Hadoop into Linux environment, we need to set up Linux using

ssh (Secure Shell). Follow the steps given below for setting up the Linux

environment.

Creating a User

First of all, it is recommended to create a separate user for Hadoop to isolate the

Hadoop file system from the Unix file system. Follow the steps given below to

create a user.

1. Open the root using the command “su”.

2. Create a user from the root account using the command “useradd

username”.

3. Now you can open an existing user account using the command “su

username”.

Open the Linux terminal and type the following commands to create a user.

$ su

password:

useradd hadoop

passwd hadoop

New passwd:

Retype new passwd

SSH Setup and Key Generation

SSH setup is required to perform different operations on the cluster such as

start, stop, and distributed daemon shell operations. To authenticate different

users of Hadoop, it is required to provide public/private key pair for a Hadoop

user and share it with different users.

3. INSTALLATION

HBase

10

The following commands are used to generate a key value pair using SSH. Copy

the public keys form id_rsa.pub to authorized_keys, and provide owner, read

and write permissions to authorized_keys file respectively.

$ ssh-keygen -t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

$ chmod 0600 ~/.ssh/authorized_keys

Verify ssh

ssh localhost

Installing Java

Java is the main prerequisite for Hadoop and HBase. First of all, you should

verify the existence of java in your system using “java -version”. The syntax of

java version command is given below.

$ java -version

If everything works fine, it will give you the following output.

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

If java is not installed in your system, then follow the steps given below for

installing java.

Step 1

Download java (JDK <latest version> - X64.tar.gz) by visiting the following link

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html.

Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system.

Step 2

Generally you will find the downloaded java file in Downloads folder. Verify it

and extract the jdk-7u71-linux-x64.gz file using the following commands.

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

HBase

11

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

Step 3

To make java available to all the users, you have to move it to the location

“/usr/local/”. Open root and type the following commands.

$ su

password:

mv jdk1.7.0_71 /usr/local/

exit

Step 4

For setting up PATH and JAVA_HOME variables, add the following commands

to ~/.bashrc file.

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH= $PATH:$JAVA_HOME/bin

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step 5

Use the following commands to configure java alternatives:

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar

Now verify the installation using the command java -version from the terminal

as explained above.

HBase

12

Downloading Hadoop

After installing java, you have to install Hadoop. First of all, verify the existence

of Hadoop using “ Hadoop version ” command as shown below.

hadoop version

If everything works fine, it will give you the following output.

Hadoop 2.6.0

Compiled by jenkins on 2014-11-13T21:10Z

Compiled with protoc 2.5.0

From source with checksum 18e43357c8f927c0695f1e9522859d6a

This command was run using

/home/hadoop/hadoop/share/hadoop/common/hadoop-common-2.6.0.jar

If your system is unable to locate Hadoop, then download Hadoop in your

system. Follow the commands given below to do so.

Download and extract hadoop-2.6.0 from Apache Software Foundation using the

following commands.

$ su

password:

cd /usr/local

wget http://mirrors.advancedhosters.com/apache/hadoop/common/hadoop-

2.6.0/hadoop-2.6.0-src.tar.gz

tar xzf hadoop-2.6.0-src.tar.gz

mv hadoop-2.6.0/* hadoop/

exit

Installing Hadoop

Install Hadoop in any of the required mode. Here, we are demonstrating HBase

functionalities in pseudo distributed mode, therefore install Hadoop in pseudo

distributed mode.

The following steps are used for installing Hadoop 2.4.1.

Step 1 - Setting up Hadoop

You can set Hadoop environment variables by appending the following

commands to ~/.bashrc file.

HBase

13

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

export HADOOP_INSTALL=$HADOOP_HOME

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step 2 - Hadoop Configuration

You can find all the Hadoop configuration files in the location

“$HADOOP_HOME/etc/hadoop”. You need to make changes in those

configuration files according to your Hadoop infrastructure.

$ cd $HADOOP_HOME/etc/hadoop

In order to develop Hadoop programs in java, you have to reset the java

environment variable in hadoop-env.sh file by replacing JAVA_HOME value

with the location of java in your system.

export JAVA_HOME=/usr/local/jdk1.7.0_71

You will have to edit the following files to configure Hadoop.

core-site.xml

The core-site.xml file contains information such as the port number used for

Hadoop instance, memory allocated for file system, memory limit for storing

data, and the size of Read/Write buffers.

Open core-site.xml and add the following properties in between the

<configuration>and </configuration> tags.

<configuration>

HBase

14

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

 </property>

</configuration>

hdfs-site.xml

The hdfs-site.xml file contains information such as the value of replication

data, namenode path, and datanode path of your local file systems, where you

want to store the Hadoop infrastructure.

Let us assume the following data.

dfs.replication (data replication value) = 1

(In the below given path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file

system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

Open this file and add the following properties in between the <configuration>,

</configuration> tags.

<configuration>

 <property>

 <name>dfs.replication</name>
 <value>1</value>

 </property>

 <property>

 <name>dfs.name.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.data.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/datanode</value>

 </property>

</configuration>

HBase

15

Note: In the above file, all the property values are user-defined and you can

make changes according to your Hadoop infrastructure.

yarn-site.xml

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and

add the following property in between the <configuration>, </configuration>

tags in this file.

<configuration>

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

</configuration>

mapred-site.xml

This file is used to specify which MapReduce framework we are using. By default,

Hadoop contains a template of yarn-site.xml. First of all, it is required to copy

the file from mapred-site.xml.template to mapred-site.xml file using the

following command.

$ cp mapred-site.xml.template mapred-site.xml

Open mapred-site.xml file and add the following properties in between the

<configuration> and </configuration> tags.

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

Verifying Hadoop Installation

The following steps are used to verify the Hadoop installation.

Step 1 - Name Node Setup

Set up the namenode using the command “hdfs namenode -format” as follows.

$ cd ~

HBase

16

$ hdfs namenode -format

The expected result is as follows.

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:

/**

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = localhost/192.168.1.11

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 2.4.1

...

...

10/24/14 21:30:56 INFO common.Storage: Storage directory

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to

retain 1 images with txid >= 0

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11

**/

Step 2 - Verifying Hadoop dfs

The following command is used to start dfs. Executing this command will start

your Hadoop file system.

$ start-dfs.sh

The expected output is as follows.

10/24/14 21:37:56

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-namenode-localhost.out

localhost: starting datanode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

HBase

17

Step 3 - Verifying Yarn Script

The following command is used to start the yarn script. Executing this command

will start your yarn daemons.

$ start-yarn.sh

The expected output is as follows.

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out

localhost: starting nodemanager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

Step 4 - Accessing Hadoop on Browser

The default port number to access Hadoop is 50070. Use the following url to get

Hadoop services on your browser.

http://localhost:50070/

Step 5 - Verify all Applications of Cluster

The default port number to access all the applications of cluster is 8088. Use the

following url to visit this service.

HBase

18

http://localhost:8088/

Installing HBase

We can install HBase in any of the three modes: Standalone mode, Pseudo

Distributed mode, and Fully Distributed mode.

Installing HBase in Standalone Mode

Download the latest stable version of HBase form http://www.interior-

dsgn.com/apache/hbase/stable/ using “wget” command, and extract it using the

tar “zxvf” command. See the following command.

$cd usr/local/

$wget http://www.interior-dsgn.com/apache/hbase/stable/hbase-0.98.8-

hadoop2-bin.tar.gz

$tar -zxvf hbase-0.98.8-hadoop2-bin.tar.gz

Shift to super user mode and move the HBase folder to /usr/local as shown

below.

$su

$password: enter your password here

mv hbase-0.99.1/* Hbase/

Configuring HBase in Standalone Mode

Before proceeding with HBase, you have to edit the following files and configure

HBase.

hbase-env.sh

Set the java Home for HBase and open hbase-env.sh file from the conf folder.

Edit JAVA_HOME environment variable and change the existing path to your

current JAVA_HOME variable as shown below.

HBase

19

cd /usr/local/Hbase/conf

gedit hbase-env.sh

This will open the env.sh file of HBase. Now replace the existing JAVA_HOME

value with your current value as shown below.

export JAVA_HOME=/usr/lib/jvm/java-1.7.0

hbase-site.xml

This is the main configuration file of HBase. Set the data directory to an

appropriate location by opening the HBase home folder in /usr/local/HBase.

Inside the conf folder, you will find several files, open the hbase-site.xml file as

shown below.

#cd /usr/local/HBase/

#cd conf

gedit hbase-site.xml

Inside the hbase-site.xml file, you will find the <configuration> and

</configuration> tags. Within them, set the HBase directory under the property

key with the name “hbase.rootdir” as shown below.

<configuration>

//Here you have to set the path where you want HBase to store its files.

<property>

 <name>hbase.rootdir</name>

 <value>file:/home/hadoop/HBase/HFiles</value>

</property>

//Here you have to set the path where you want HBase to store its built

in zookeeper files.

<property>

 <name>hbase.zookeeper.property.dataDir</name>

 <value>/home/hadoop/zookeeper</value>

</property>

</configuration>

HBase

20

With this, the HBase installation and configuration part is successfully complete.

We can start HBase by using start-hbase.sh script provided in the bin folder of

HBase. For that, open HBase Home Folder and run HBase start script as shown

below.

$cd /usr/local/HBase/bin

$./start-hbase.sh

If everything goes well, when you try to run HBase start script, it will prompt

you a message saying that HBase has started.

starting master, logging to /usr/local/HBase/bin/../logs/hbase-tp-

master-localhost.localdomain.out

Installing HBase in Pseudo-Distributed Mode

Let us now check how HBase is installed in pseudo-distributed mode.

Configuring HBase

Before proceeding with HBase, configure Hadoop and HDFS on your local system

or on a remote system and make sure they are running. Stop HBase if it is

running.

hbase-site.xml

Edit hbase-site.xml file to add the following properties.

<property>

 <name>hbase.cluster.distributed</name>

 <value>true</value>

</property

It will mention in which mode HBase should be run. In the same file from the

local file system, change the hbase.rootdir, your HDFS instance address, using

the hdfs://// URI syntax. We are running HDFS on the localhost at port 8030.

<property>

 <name>hbase.rootdir</name>

HBase

21

 <value>hdfs://localhost:8030/hbase</value>

</property>

Starting HBase

After configuration is over, browse to HBase home folder and start HBase using

the following command.

$cd /usr/local/HBase

$bin/start-hbase.sh

Note: Before starting HBase, make sure Hadoop is running.

Checking the HBase Directory in HDFS

HBase creates its directory in HDFS. To see the created directory, browse to

Hadoop bin and type the following command.

$./bin/hadoop fs -ls /hbase

If everything goes well, it will give you the following output.

Found 7 items

drwxr-xr-x - hbase users 0 2014-06-25 18:58 /hbase/.tmp

drwxr-xr-x - hbase users 0 2014-06-25 21:49 /hbase/WALs

drwxr-xr-x - hbase users 0 2014-06-25 18:48 /hbase/corrupt

drwxr-xr-x - hbase users 0 2014-06-25 18:58 /hbase/data

-rw-r--r-- 3 hbase users 42 2014-06-25 18:41 /hbase/hbase.id

-rw-r--r-- 3 hbase users 7 2014-06-25 18:41 /hbase/hbase.version

drwxr-xr-x - hbase users 0 2014-06-25 21:49 /hbase/oldWALs

Starting and Stopping a Master

Using the “local-master-backup.sh” you can start up to 10 servers. Open the

home folder of HBase, master and execute the following command to start it.

$./bin/local-master-backup.sh 2 4

To kill a backup master, you need its process id, which will be stored in a file

named “/tmp/hbase-USER-X-master.pid.” you can kill the backup master

using the following command.

HBase

22

$ cat /tmp/hbase-user-1-master.pid |xargs kill -9

Starting and Stopping Region Servers

You can run multiple region servers from a single system using the following

command.

$.bin/local-regionservers.sh start 2 3

To stop a region server, use the following command.

$.bin/local-regionservers.sh stop 3

Starting HBase Shell

Given below are the sequence of steps that are to be followed before starting the

HBase shell. Open the terminal, and login as super user.

Strat Hadoop File System

Browse through Hadoop home sbin folder and start Hadoop file system as shown

below.

$cd $HADOOP_HOME/sbin

$start-all.sh

Start HBase

Browse through the HBase root directory bin folder and start HBase.

$cd /usr/local/HBase

$./bin/start-hbase.sh

Start HBase Master Server

This will be the same directory. Start it as shown below.

$./bin/local-master-backup.sh start 2 (number signifies specific

server.)

Start Region

Start the region server as shown below.

HBase

23

$./bin/./local-regionservers.sh start 3

Start HBase Shell

You can start HBase shell using the following command.

$cd bin

$./hbase shell

This will give you the HBase Shell Prompt as shown below.

2014-12-09 14:24:27,526 INFO [main] Configuration.deprecation:

hadoop.native.lib is deprecated. Instead, use io.native.lib.available

HBase Shell; enter 'help<RETURN>' for list of supported commands.

Type "exit<RETURN>" to leave the HBase Shell

Version 0.98.8-hadoop2, r6cfc8d064754251365e070a10a82eb169956d5fe, Fri

Nov 14 18:26:29 PST 2014

hbase(main):001:0>

HBase Web Interface

To access the web interface of HBase, type the following url in the browser.

http://localhost:60010

This interface lists your currently running Region servers, backup masters and

HBase tables.

HBase Region servers and Backup Masters

HBase

24

HBase Tables

HBase

25

HBase

26

This chapter explains how to start HBase interactive shell that comes along with

HBase.

HBase Shell

HBase contains a shell using which you can communicate with HBase. HBase

uses the Hadoop File System to store its data. It will have a master server and

region servers. The data storage will be in the form of regions (tables). These

regions will be split up and stored in region servers.

The master server manages these region servers and all these tasks take place

on HDFS. Given below are some of the commands supported by HBase Shell.

General Commands

 status: Provides the status of HBase, for example, the number of servers.

 version: Provides the version of HBase being used.

 table_help: Provides help for table-reference commands.

 whoami: Provides information about the user.

Data Definition Language

These are the commands that operate on the tables in HBase.

 create: Creates a table.

 list: Lists all the tables in HBase.

 disable: Disables a table.

 is_disabled: Verifies whether a table is disabled.

 enable: Enables a table.

 is_enabled: Verifies whether a table is enabled.

 describe: Provides the description of a table.

 alter: Alters a table.

 exists: Verifies whether a table exists.

 drop: Drops a table from HBase.

4. SHELL

HBase

27

 drop_all: Drops the tables matching the ‘regex’ given in the command.

 Java Admin API: Prior to all the above commands, Java provides an

Admin API to achieve DDL functionalities through programming. Under

org.apache.hadoop.hbase.client package, HBaseAdmin and

HTableDescriptor are the two important classes in this package that

provide DDL functionalities.

Data Manipulation Language

 put: Puts a cell value at a specified column in a specified row in a

particular table.

 get: Fetches the contents of row or a cell.

 delete: Deletes a cell value in a table.

 deleteall: Deletes all the cells in a given row.

 scan: Scans and returns the table data.

 count: Counts and returns the number of rows in a table.

 truncate: Disables, drops, and recreates a specified table.

 Java client API: Prior to all the above commands, Java provides a client

API to achieve DML functionalities, CRUD (Create Retrieve Update Delete)

operations and more through programming, under

org.apache.hadoop.hbase.client package. HTable Put and Get are the

important classes in this package.

Starting HBase Shell

To access the HBase shell, you have to navigate to the HBase home folder.

cd /usr/localhost/

cd Hbase

You can start the HBase interactive shell using “hbase shell” command as

shown below.

./bin/hbase shell

If you have successfully installed HBase in your system, then it gives you the

HBase shell prompt as shown below.

HBase Shell; enter 'help<RETURN>' for list of supported commands.

HBase

28

Type "exit<RETURN>" to leave the HBase Shell

Version 0.94.23, rf42302b28aceaab773b15f234aa8718fff7eea3c, Wed Aug 27

00:54:09 UTC 2014

hbase(main):001:0>

To exit the interactive shell command at any moment, type exit or use <ctrl+c>.

Check the shell functioning before proceeding further. Use the list command for

this purpose. List is a command used to get the list of all the tables in HBase.

First of all, verify the installation and the configuration of HBase in your system

using this command as shown below.

hbase(main):001:0> list

When you type this command, it gives you the following output.

hbase(main):001:0> list

TABLE

HBase

29

The general commands in HBase are status, version, table_help, and whoami.

This chapter explains these commands.

status

This command returns the status of the system including the details of the

servers running on the system. Its syntax is as follows:

hbase(main):009:0> status

If you execute this command, it returns the following output.

hbase(main):009:0> status

3 servers, 0 dead, 1.3333 average load

version

This command returns the version of HBase used in your system. Its syntax is as

follows:

hbase(main):010:0> version

If you execute this command, it returns the following output.

hbase(main):009:0> version

0.98.8-hadoop2, r6cfc8d064754251365e070a10a82eb169956d5fe, Fri Nov 14

18:26:29 PST 2014

table_help

This command guides you what and how to use table-referenced commands.

Given below is the syntax to use this command.

hbase(main):02:0> table_help

When you use this command, it shows help topics for table-related commands.

Given below is the partial output of this command.

5. GENERAL COMMANDS

HBase

30

hbase(main):002:0> table_help

Help for table-reference commands.

You can either create a table via 'create' and then manipulate the table
via commands like 'put', 'get', etc.

See the standard help information for how to use each of these commands.

However, as of 0.96, you can also get a reference to a table, on which

you can invoke commands.

For instance, you can get create a table and keep around a reference to
it via:

 hbase> t = create 't', 'cf'…...

whoami

This command returns the user details of HBase. If you execute this command,

returns the current HBase user as shown below.

hbase(main):008:0> whoami

hadoop (auth:SIMPLE)

 groups: hadoop

HBase

31

HBase is written in java, therefore it provides java API to communicate with

HBase. Java API is the fastest way to communicate with HBase. Given below is

the referenced java Admin API that covers the tasks used to manage tables.

Class HBaseAdmin

HBaseAdmin is a class representing the Admin. This class belongs to the

org.apache.hadoop.hbase.client package. Using this class, you can perform

the tasks of an administrator. You can get the instance of Admin using

Connection.getAdmin() method.

Methods and Description

S. No. Methods and Description

1 void createTable(HTableDescriptor desc)

Creates a new table.

2 void createTable(HTableDescriptor desc, byte[][] splitKeys)

Creates a new table with an initial set of empty regions defined by the

specified split keys.

3 void deleteColumn(byte[] tableName, String columnName)

Deletes a column from a table.

4 void deleteColumn(String tableName, String columnName)

Delete a column from a table.

5 void deleteTable(String tableName)

Deletes a table.

Class Descriptor

This class contains the details about an HBase table such as:

 the descriptors of all the column families,

6. ADMIN API

HBase

32

 if the table is a catalog table,

 if the table is read only,

 the maximum size of the mem store,

 when the region split should occur,

 co-processors associated with it, etc.

Constructors

S. No. Constructor and summary

1 HTableDescriptor(TableName name)

Constructs a table descriptor specifying a TableName object.

Methods and Description

S. No. Methods and Description

1 HTableDescriptor addFamily(HColumnDescriptor family)

Adds a column family to the given descriptor.

Setting the Classpath

Before proceeding with programming, set the classpath to HBase libraries in

.bashrc file. Open .bashrc in any of the editors as shown below.

$ gedit ~/.bashrc

Set classpath for HBase libraries (lib folder in HBase) in it as shown below.

export CLASSPATH=$CLASSPATH://home/hadoop/hbase/lib/*

This is to prevent the “class not found” exception while accessing the HBase

using java API.

HBase

33

Creating Table

You can create a table using the create command, here you must specify the

table name and the Column Family name. The syntax to create a table in HBase

shell is shown below.

create ‘<table name>’,’<column family>’

Example

Given below is a sample schema of a table named emp. It has two column

families: “personal data” and “professional data”.

Row key personal data professional data

You can create this table in HBase shell as shown below.

hbase(main):002:0> create 'emp', 'personal data', ’professional data’

And it will give you the following output.

0 row(s) in 1.1300 seconds

=> Hbase::Table - emp

Verifying the Creation

You can verify whether the table is created using the list command as shown

below. Here you can observe the created emp table.

hbase(main):002:0> list

TABLE

7. CREATE TABLE

HBase

34

emp

2 row(s) in 0.0340 seconds

Creating a Table Using java API

You can create a table in HBase using the createTable() method of

HBaseAdmin class. This class belongs to the

org.apache.hadoop.hbase.client package. Given below are the steps to

create a table in HBase using java API.

Step 1: Instantiate HBaseAdmin

This class requires the Configuration object as a parameter, therefore initially

instantiate the Configuration class and pass this instance to HBaseAdmin.

Configuration conf = HBaseConfiguration.create();

HBaseAdmin admin = new HBaseAdmin(conf);

Step 2: Create TableDescriptor

HTableDescriptor is a class that belongs to the org.apache.hadoop.hbase

class. This class is like a container of table names and column families.

//creating table descriptor

HTableDescriptor table = new HTableDescriptor(toBytes("Table name"));

//creating column family descriptor

HColumnDescriptor family = new HColumnDescriptor(toBytes("column family"));

//adding coloumn family to HTable

table.addFamily(family);

Step 3: Execute through Admin

Using the createTable() method of HBaseAdmin class, you can execute the

created table in Admin mode.

admin.createTable(table);

HBase

35

Given below is the complete program to create a table via admin.

import java.io.IOException;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HColumnDescriptor;

import org.apache.hadoop.hbase.HTableDescriptor;

import org.apache.hadoop.hbase.client.HBaseAdmin;

import org.apache.hadoop.hbase.TableName;

public class CreateTable {

 public static void main(String[] args) throws IOException {

 // Instantiating configuration class

 Configuration con = HBaseConfiguration.create();

 // Instantiating HbaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(con);

 // Instantiating table descriptor class

 HTableDescriptor tableDescriptor = new

 TableDescriptor(TableName.valueOf("emp"));

 // Adding column families to table descriptor

 tableDescriptor.addFamily(new HColumnDescriptor("personal"));

 tableDescriptor.addFamily(new HColumnDescriptor("professional"));

 // Execute the table through admin

 admin.createTable(tableDescriptor);

 System.out.println(" Table created ");

 }

HBase

36

}

Compile and execute the above program as shown below.

$javac CreateTable.java

$java CreateTable

The above compilation works fine only if you have set the classpath in

“.bashrc”. If you haven't, follow the procedure given below to compile your

.java file.

//if ” /home/home/hadoop/hbase “ is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will give you the following output:

Table created

HBase

37

list

List is the command that is used to list all the tables in HBase. Given below is

the syntax of the list command.

hbase(main):001:0 > list

When you type this command and execute in HBase prompt, it will display the

list of all the tables in HBase as shown below.

hbase(main):001:0> list

TABLE

emp

Here you can observe a table named emp.

Listing Tables Using Java API

Follow the steps given below to get the list of tables from HBase using java API.

Step 1

You have a method called listTables() in the class HBaseAdmin to get the list

of all the tables in HBase. This method returns an array of HTableDescriptor

objects.

//creating a configuration object

Configuration conf = HBaseConfiguration.create();

 //Creating HBaseAdmin object

HBaseAdmin admin = new HBaseAdmin(conf);

//Getting all the list of tables using HBaseAdmin object

HTableDescriptor[] tableDescriptor =admin.listTables();

8. LISTING TABLES

HBase

38

Step 2

You can get the length of the HTableDescriptor[] array using the length

variable of the HTableDescriptor class. Get the name of the tables from this

object using getNameAsString() method. Run the ‘for’ loop using these and

get the list of the tables in HBase.

Given below is the program to list all the tables in HBase using Java API.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.HTableDescriptor;

import org.apache.hadoop.hbase.MasterNotRunningException;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class ListTables {

 public static void main(String args[])throws

 MasterNotRunningException, IOException{

 // Instantiating a configuration class

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

 // Getting all the list of tables using HBaseAdmin object

 HTableDescriptor[] tableDescriptor =admin.listTables();

 // printing all the table names.

 for (int i=0;i< tableDescriptor.length;i++){

 System.out.println(tableDescriptor[i].getNameAsString());

 }

HBase

39

 }

}

Compile and execute the above program as shown below.

$javac ListTables.java

$java ListTables

The above compilation works fine only if you have set the classpath in

“.bashrc”. If you haven't, follow the procedure given below to compile your

.java file.

//if " /home/home/hadoop/hbase " is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will give you the following output:

User

emp

HBase

40

Disable a Table

To delete a table or change its settings, you need to first disable the table using

the disable command. You can re-enable it using the enable command.

Given below is the syntax to disable a table:

disable ‘emp’

Given below is an example that shows how to disable a table.

hbase(main):025:0> disable 'emp'

0 row(s) in 1.2760 seconds

Verification

After disabling the table, you can still sense its existence through list and exists

commands. You cannot scan it. It will give you the following error.

hbase(main):028:0> scan 'emp'

ROW COLUMN+CELL

ERROR: emp is disabled.

is_disabled

This command is used to find whether a table is disabled. Its syntax is as

follows.

hbase> is_disabled 'table name'

The following example verifies whether the table named emp is disabled. If it is

disabled, it will return true and if not, it will return false.

9. DISABLING A TABLE

HBase

41

hbase(main):031:0> is_disabled 'emp'

true

0 row(s) in 0.0440 seconds

disable_all

This command is used to disable all the tables matching the given regex. The

syntax for disable_all command is given below.

hbase> disable_all 'r.*'

Suppose there are 5 tables in HBase, namely raja, rajani, rajendra, rajesh, and

raju. The following code will disable all the tables starting with raj.

hbase(main):002:0> disable_all 'raj.*'

raja

rajani

rajendra

rajesh

raju

Disable the above 5 tables (y/n)?

y

5 tables successfully disabled

Disable a Table Using Java API

To verify whether a table is disabled, isTableDisabled() method is used and to

disable a table, disableTable() method is used. These methods belong to the

HBaseAdmin class. Follow the steps given below to disable a table.

Step 1

Instantiate HBaseAdmin class as shown below.

// Creating configuration object

Configuration conf = HBaseConfiguration.create();

HBase

42

// Creating HBaseAdmin object

HBaseAdmin admin = new HBaseAdmin(conf);

Step 2

Verify whether the table is disabled using isTableDisabled() method as shown

below.

Boolean b=admin.isTableDisabled("emp");

Step 3

If the table is not disabled, disable it as shown below.

if(!b){

 admin.disableTable("emp");

 System.out.println("Table disabled");

}

Given below is the complete program to verify whether the table is disabled; if

not, how to disable it.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.MasterNotRunningException;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class DisableTable{

 public static void main(String args[]) throws

 MasterNotRunningException, IOException{

 // Instantiating configuration class

HBase

43

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

 // Verifying weather the table is disabled

 Boolean bool = admin.isTableDisabled("emp");

 System.out.println(bool);

 // Disabling the table using HBaseAdmin object

 if(!bool){

 admin.disableTable("emp");

 System.out.println("Table disabled");

 }

 }

}

Compile and execute the above program as shown below.

$javac DisableTable.java

$java DsiableTable

The above compilation works only if you have set the classpath in “ .bashrc ”.

If you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

HBase

44

If everything goes well, it will produce the following output:

false

Table disabled

HBase

45

Enable a Table

Syntax to enable a table:

enable ‘emp’

Given below is an example to enable a table.

hbase(main):005:0> enable 'emp'

0 row(s) in 0.4580 seconds

Verification

After enabling the table, scan it. If you can see the schema, your table is

successfully enabled.

hbase(main):006:0> scan 'emp'

ROW COLUMN+CELL

1 column=personal data:city, timestamp=1417516501, value=hyderabad

1 column=personal data:name, timestamp=1417525058, value=ramu

1 column=professional data:designation, timestamp=1417532601, value=manager

1 column=professional data:salary, timestamp=1417524244109, value=50000

2 column=personal data:city, timestamp=1417524574905, value=chennai

2 column=personal data:name, timestamp=1417524556125, value=ravi

2 column=professional data:designation, timestamp=14175292204, value=sr:engg

2 column=professional data:salary, timestamp=1417524604221, value=30000

10. ENABLING A TABLE

HBase

46

3 column=personal data:city, timestamp=1417524681780, value=delhi

3 column=personal data:name, timestamp=1417524672067, value=rajesh

3 column=professional data:designation, timestamp=14175246987, value=jr:engg

3 column=professional data:salary, timestamp=1417524702514, value=25000

3 row(s) in 0.0400 seconds

is_enabled

This command is used to find whether a table is enabled. Its syntax is as

follows:

hbase> is_enabled 'table name'

The following code verifies whether the table named emp is enabled. If it is

enabled, it will return true and if not, it will return false.

hbase(main):031:0> is_enabled 'emp'

true

0 row(s) in 0.0440 seconds

Enable a Table Using Java API

To verify whether a table is enabled, isTableEnabled() method is used; and to

enable a table, enableTable() method is used. These methods belong to

HBaseAdmin class. Follow the steps given below to enable a table.

Step 1

Instantiate HBaseAdmin class as shown below.

// Creating configuration object

Configuration conf = HBaseConfiguration.create();

// Creating HBaseAdmin object

HBaseAdmin admin = new HBaseAdmin(conf);

HBase

47

Step 2

Verify whether the table is enabled using isTableEnabled() method as shown

below.

Boolean bool=admin.isTableEnabled("emp");

Step 3

If the table is not disabled, disable it as shown below.

if(!bool){

 admin.enableTable("emp");

 System.out.println("Table enabled");

}

Given below is the complete program to verify whether the table is enabled and

if it is not, then how to enable it.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.MasterNotRunningException;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class EnableTable{

 public static void main(String args[]) throws

 MasterNotRunningException, IOException{

 // Instantiating configuration class

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

HBase

48

 HBaseAdmin admin = new HBaseAdmin(conf);

 // Verifying weather the table is disabled

 Boolean bool = admin.isTableEnabled("emp");

 System.out.println(bool);

 // Disabling the table using HBaseAdmin object

 if(!bool){

 admin.enableTable("emp");

 System.out.println("Table Enabled");

 }

 }

}

Compile and execute the above program as shown below.

$javac EnableTable.java

$java EnableTable

The above compilation works only if you have set the classpath in “ .bashrc ”. If

you haven't, follow the procedure given below to compile your .java file.

//if " /home/home/hadoop/hbase " is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

false

HBase

49

Table Enabled

HBase

50

describe

This command returns the description of the table. Its syntax is as follows:

hbase> describe 'table name'

Given below is the output of the describe command on the emp table.

hbase(main):006:0> describe 'emp'

DESCRIPTION

 ENABLED

'emp', {NAME => 'READONLY', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER

=> 'ROW', REPLICATION_SCOPE => '0', COMPRESSION => 'NONE', VERSIONS =>
'1', TTL true

=> 'FOREVER', MIN_VERSIONS => '0', KEEP_DELETED_CELLS => 'false',

BLOCKSIZE => '65536', IN_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME

=> 'personal

data', DATA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW',

REPLICATION_SCOPE => '0', VERSIONS => '5', COMPRESSION => 'NONE',

MIN_VERSIONS => '0', TTL

 => 'FOREVER', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536',

IN_MEMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'professional
data', DATA_BLO

CK_ENCODING => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0',

VERSIONS => '1', COMPRESSION => 'NONE', MIN_VERSIONS => '0', TTL =>

'FOREVER', K

EEP_DELETED_CELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY =>

'false', BLOCKCACHE => 'true'}, {NAME => 'table_att_unset',

DATA_BLOCK_ENCODING => 'NO

NE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE => '0', COMPRESSION =>

'NONE', VERSIONS => '1', TTL => 'FOREVER', MIN_VERSIONS => '0',

11. DESCRIBE AND ALTER

HBase

51

KEEP_DELETED_CELLS

=> 'false', BLOCKSIZE => '6

alter

Alter is the command used to make changes to an existing table. Using this

command, you can change the maximum number of cells of a column family, set

and delete table scope operators, and delete a column family from a table.

Changing the Maximum Number of Cells of a Column Family

Given below is the syntax to change the maximum number of cells of a column

family.

hbase> alter 't1', NAME => 'f1', VERSIONS => 5

In the following example, the maximum number of cells is set to 5.

hbase(main):003:0> alter 'emp', NAME => 'personal data', VERSIONS => 5

Updating all regions with the new schema...

0/1 regions updated.

1/1 regions updated.

Done.

0 row(s) in 2.3050 seconds

Table Scope Operators

Using alter, you can set and remove table scope operators such as

MAX_FILESIZE, READONLY, MEMSTORE_FLUSHSIZE, DEFERRED_LOG_FLUSH,

etc.

Setting Read Only

Below given is the syntax to make a table read only.

hbase>alter 't1', READONLY(option)

In the following example, we have made the emp table read only.

hbase(main):006:0> alter 'emp', READONLY

Updating all regions with the new schema...

0/1 regions updated.

HBase

52

1/1 regions updated.

Done.

0 row(s) in 2.2140 seconds

Removing Table Scope Operators

We can also remove the table scope operators. Given below is the syntax to

remove ‘MAX_FILESIZE’ from emp table.

hbase> alter 't1', METHOD => 'table_att_unset', NAME => 'MAX_FILESIZE'

Deleting a Column Family

Using alter, you can also delete a column family. Given below is the syntax to

delete a column family using alter.

hbase> alter ‘ table name ’, ‘delete’ => ‘ column family ’

Given below is an example to delete a column family from the ‘emp’ table.

Assume there is a table named employee in HBase. It contains the following

data:

hbase(main):006:0> scan 'employee'

ROW COLUMN+CELL

 row1 column=personal:city, timestamp=1418193767, value=hyderabad

 row1 column=personal:name, timestamp=1418193806767, value=raju

 row1 column=professional:designation, timestamp=1418193767, value=manager

 row1 column=professional:salary, timestamp=1418193806767, value=50000

1 row(s) in 0.0160 seconds

Now let us delete the column family named professional using the alter

command.

hbase(main):007:0> alter 'employee','delete'=>'professional'

Updating all regions with the new schema...

0/1 regions updated.

HBase

53

1/1 regions updated.

Done.

0 row(s) in 2.2380 seconds

Now verify the data in the table after alteration. Observe the column family

‘professional’ is no more, since we have deleted it.

hbase(main):003:0> scan 'employee'

ROW COLUMN+CELL

 row1 column=personal:city, timestamp=14181936767, value=hyderabad

 row1 column=personal:name, timestamp=1418193806767, value=raju

1 row(s) in 0.0830 seconds

Adding a Column Family Using Java API

You can add a column family to a table using the method addColumn() of

HBAseAdmin class. Follow the steps given below to add a column family to a

table.

Step 1

Instantiate the HBaseAdmin class.

 // Instantiating configuration object

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

Step 2

The addColumn() method requires a table name and an object of

HColumnDescriptor class. Therefore instantiate the HColumnDescriptor

class. The constructor of HColumnDescriptor in turn requires a column family

HBase

54

name that is to be added. Here we are adding a column family named

“contactDetails” to the existing “employee” table.

 // Instantiating columnDescriptor object

 HColumnDescriptor columnDescriptor = new

 HColumnDescriptor("contactDetails");

Step 3

Add the column family using addColumn method. Pass the table name and the

HColumnDescriptor class object as parameters to this method.

 // Adding column family

 admin.addColumn("employee", new HColumnDescriptor("columnDescriptor"));

Given below is the complete program to add a column family to an existing

table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.HColumnDescriptor;

import org.apache.hadoop.hbase.MasterNotRunningException;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class AddColoumn{

 public static void main(String args[]) throws

 MasterNotRunningException, IOException{

 // Instantiating configuration class.

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class.

 HBaseAdmin admin = new HBaseAdmin(conf);

HBase

55

 // Instantiating columnDescriptor class

 HColumnDescriptor columnDescriptor =new

 HColumnDescriptor("contactDetails");

 // Adding column family

 admin.addColumn("employee", columnDescriptor);

 System.out.println("coloumn added");

 }

}

Compile and execute the above program as shown below.

$javac AddColumn.java

$java AddColumn

The above compilation works only if you have set the classpath in “ .bashrc ”.

If you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase " is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

column added

Deleting a Column Family Using Java API

You can delete a column family from a table using the method deleteColumn()

of HBAseAdmin class. Follow the steps given below to add a column family to a

table.

Step 1

Instantiate the HBaseAdmin class.

 // Instantiating configuration object

 Configuration conf = HBaseConfiguration.create();

HBase

56

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

Step 2

Add the column family using deleteColumn() method. Pass the table name and

the column family name as parameters to this method.

// Deleting column family

admin.deleteColumn("employee", "contactDetails");

Given below is the complete program to delete a column family from an existing

table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.MasterNotRunningException;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class DeleteColoumn{

 public static void main(String args[]) throws

 MasterNotRunningException, IOException{

 // Instantiating configuration class.

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class.

 HBaseAdmin admin = new HBaseAdmin(conf);

 // Deleting a column family

 admin.deleteColumn("employee","contactDetails");

 System.out.println("coloumn deleted");

HBase

57

 }

}

Compile and execute the above program as shown below.

$javac DeleteColumn.java

$java DeleteColumn

The above compilation works only if you have set the class path in “ .bashrc ”.

If you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

column deleted

HBase

58

exists

You can verify the existence of a table using the exists command. The following

example shows how to use this command.

hbase(main):024:0> exists 'emp'

Table emp does exist

0 row(s) in 0.0750 seconds

==

hbase(main):015:0> exists 'student'

Table student does not exist

0 row(s) in 0.0480 seconds

Verifying the Existence of Table Using Java API

You can verify the existence of a table in HBase using the tableExists() method

of the HBaseAdmin class. Follow the steps given below to verify the existence

of a table in HBase.

Step 1

 Instantiate the HBaseAdimn class

 // Instantiating configuration object

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

12. EXISTS

HBase

59

Step 2

Verify the existence of the table using the tableExists() method.

Given below is the java program to test the existence of a table in HBase using

java API.

import java.io.IOException;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class TableExists{

 public static void main(String args[])throws IOException{

 // Instantiating configuration class

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

 // Verifying the existance of the table

 boolean bool = admin.tableExists("emp");

 System.out.println(bool);

 }

}

Compile and execute the above program as shown below.

$javac TableExists.java

$java TableExists

The above compilation works only if you have set the classpath in “ .bashrc ”. If

you haven't, follow the procedure given below to compile your .java file.

HBase

60

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

true

HBase

61

drop

Using the drop command, you can delete a table. Before dropping a table, you

have to disable it.

hbase(main):018:0> disable 'emp'

0 row(s) in 1.4580 seconds

hbase(main):019:0> drop 'emp'

0 row(s) in 0.3060 seconds

Verify whether the table is deleted using the exists command.

hbase(main):020:0> exists 'emp'

Table emp does not exist

0 row(s) in 0.0730 seconds

drop_all

This command is used to drop the tables matching the “regex” given in the

command. Its syntax is as follows:

hbase> drop_all ‘t.*’

Note: Before dropping a table, you must disable it.

Example

Assume there are tables named raja, rajani, rajendra, rajesh, and raju.

hbase(main):017:0> list

TABLE

raja

rajani

rajendra

13. DROP A TABLE

HBase

62

rajesh

raju

9 row(s) in 0.0270 seconds

All these tables start with the letters raj. First of all, let us disable all these

tables using the disable_all command as shown below.

hbase(main):002:0> disable_all 'raj.*'

raja

rajani

rajendra

rajesh

raju

Disable the above 5 tables (y/n)?

y

5 tables successfully disabled

Now you can delete all of them using the drop_all command as given below.

hbase(main):018:0> drop_all 'raj.*'

raja

rajani

rajendra

rajesh

raju

Drop the above 5 tables (y/n)?

y

5 tables successfully dropped

Deleting a Table Using Java API

You can delete a table using the deleteTable() method in the HBaseAdmin

class. Follow the steps given below to delete a table using java API.

HBase

63

Step 1

Instantiate the HBaseAdmin class.

// creating a configuration object

Configuration conf = HBaseConfiguration.create();

// Creating HBaseAdmin object

HBaseAdmin admin = new HBaseAdmin(conf);

Step 2

Disable the table using the disableTable() method of the HBaseAdmin class.

admin.disableTable("emp1");

Step 3

Now delete the table using the deleteTable() method of the HBaseAdmin

class.

admin.deleteTable("emp12");

Given below is the complete java program to delete a table in HBase.

import java.io.IOException;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class DeleteTable {

 public static void main(String[] args) throws IOException {

 // Instantiating configuration class

 Configuration conf = HBaseConfiguration.create();

HBase

64

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

 // disabling table named emp

 admin.disableTable("emp12");

 // Deleting emp

 admin.deleteTable("emp12");

 System.out.println("Table deleted");

 }

}

Compile and execute the above program as shown below.

$javac DeleteTable.java

$java DeleteTable

The above compilation works only if you have set the classpath in “.bashrc”. If

you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

Table deleted

HBase

65

exit

You exit the shell by typing the exit command.

hbase(main):021:0> exit

Stopping HBase

To stop HBase, browse to the HBase home folder and type the following

command.

./bin/stop-hbase.sh

Stopping HBase Using Java API

You can shut down the HBase using the shutdown() method of the

HBaseAdmin class. Follow the steps given below to shut down HBase:

Step 1

Instantiate the HbaseAdmin class.

 // Instantiating configuration object

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin object

 HBaseAdmin admin = new HBaseAdmin(conf);

Step 2

Shut down the HBase using the shutdown() method of the HBaseAdmin class.

admin.shutdown();

14. SHUTTING DOWN HBASE

HBase

66

Given below is the program to stop the HBase.

import java.io.IOException;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.client.HBaseAdmin;

public class ShutDownHbase{

 public static void main(String args[])throws IOException {

 // Instantiating configuration class

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HBaseAdmin class

 HBaseAdmin admin = new HBaseAdmin(conf);

 // Shutting down HBase

 System.out.println("Shutting down hbase");

 admin.shutdown();

 }

}

Compile and execute the above program as shown below.

$javac ShutDownHbase.java

$java ShutDownHbase

HBase

67

The above compilation works only if you have set the classpath in “.bashrc”. If

you haven't, follow the procedure given below to compile your .java file.

 // if "/home/home/hadoop/hbase" is your Hbase home folder then.

 $javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

Shutting down hbase

HBase

68

This chapter describes the java client API for HBase that is used to perform

CRUD operations on HBase tables. HBase is written in Java and has a Java

Native API. Therefore it provides programmatic access to Data Manipulation

Language (DML).

Class HBaseConfiguration

Adds HBase configuration files to a Configuration. This class belongs to the

org.apache.hadoop.hbase package.

Methods and description

S. No. Methods and Description

1 static org.apache.hadoop.conf.Configuration create()

This method creates a Configuration with HBase resources.

Class HTable

HTable is an HBase internal class that represents an HBase table. It is an

implementation of table that is used to communicate with a single HBase table.

This class belongs to the org.apache.hadoop.hbase.client class.

Constructors

S. No. Constructors and Description

1 HTable()

2 HTable(TableName tableName, ClusterConnection connection,

ExecutorService pool)

Using this constructor, you can create an object to access an HBase

table.

15. CLIENT API

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#HTable%28%29
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/TableName.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/ClusterConnection.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html?is-external=true

HBase

69

Methods and description

S. No. Methods and Description

1 void close()

Releases all the resources of the HTable.

2 void delete(Delete delete)

Deletes the specified cells/row.

3 boolean exists(Get get)

Using this method, you can test the existence of columns in the
table, as specified by Get.

4 Result get(Get get)

Retrieves certain cells from a given row.

5 org.apache.hadoop.conf.Configuration getConfiguration()

Returns the Configuration object used by this instance.

6 TableName getName()

Returns the table name instance of this table.

7 HTableDescriptor getTableDescriptor()

Returns the table descriptor for this table.

8 byte[] getTableName()

Returns the name of this table.

9 void put(Put put)

Using this method, you can insert data into the table.

Class Put

This class is used to perform Put operations for a single row. It belongs to the

org.apache.hadoop.hbase.client package.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#exists%28org.apache.hadoop.hbase.client.Get%29
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html

HBase

70

Constructor

S. No. Constructors and Description

1 Put(byte[] row)

Using this constructor, you can create a Put operation for the
specified row.

2 Put(byte[] rowArray, int rowOffset, int rowLength)

Using this constructor, you can make a copy of the passed-in row
key to keep local.

3 Put(byte[] rowArray, int rowOffset, int rowLength, long ts)

Using this constructor, you can make a copy of the passed-in row

key to keep local.

4 Put(byte[] row, long ts)

Using this constructor, we can create a Put operation for the

specified row, using a given timestamp.

Methods

S. No. Methods and Description

1 Put add(byte[] family, byte[] qualifier, byte[] value)

Adds the specified column and value to this Put operation.

2 Put add(byte[] family, byte[] qualifier, long ts, byte[] value)

Adds the specified column and value, with the specified timestamp

as its version to this Put operation.

3 Put add(byte[] family, ByteBuffer qualifier, long ts,

ByteBuffer value)

Adds the specified column and value, with the specified timestamp
as its version to this Put operation.

4 Put add(byte[] family, ByteBuffer qualifier, long ts,
ByteBuffer value)

Adds the specified column and value, with the specified timestamp

as its version to this Put operation.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html#Put%28byte[]%29
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html?is-external=true
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html?is-external=true

HBase

71

Class Get

This class is used to perform Get operations on a single row. This class belongs

to the org.apache.hadoop.hbase.client package.

Constructor

S. No. Constructor and Description

1 Get(byte[] row)

Using this constructor, you can create a Get operation for the
specified row.

2 Get(Get get)

Methods

S. No. Methods and Description

1 Get addColumn(byte[] family, byte[] qualifier)

Retrieves the column from the specific family with the specified
qualifier.

2 Get addFamily(byte[] family)

Retrieves all columns from the specified family.

Class Delete

This class is used to perform Delete operations on a single row. To delete an

entire row, instantiate a Delete object with the row to delete. This class belongs

to the org.apache.hadoop.hbase.client package.

Constructor

S. No. Constructor and Description

1 Delete(byte[] row)

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html#Get%28byte[]%29
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html#Get%28org.apache.hadoop.hbase.client.Get%29
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html

HBase

72

Creates a Delete operation for the specified row.

2 Delete(byte[] rowArray, int rowOffset, int rowLength)

Creates a Delete operation for the specified row and timestamp.

3 Delete(byte[] rowArray, int rowOffset, int rowLength, long ts)

Creates a Delete operation for the specified row and timestamp.

4 Delete(byte[] row, long timestamp)

Creates a Delete operation for the specified row and timestamp.

Methods

S. No. Methods and Description

1 Delete addColumn(byte[] family, byte[] qualifier)

Deletes the latest version of the specified column.

2 Delete addColumns(byte[] family, byte[] qualifier, long

timestamp)

Deletes all versions of the specified column with a timestamp less than
or equal to the specified timestamp.

3 Delete addFamily(byte[] family)

Deletes all versions of all columns of the specified family.

4 Delete addFamily(byte[] family, long timestamp)

Deletes all columns of the specified family with a timestamp less than

or equal to the specified timestamp.

HBase

73

Class Result

This class is used to get a single row result of a Get or a Scan query.

Constructors

S. No. Constructors

1 Result()

Using this constructor, you can create an empty Result with no
KeyValue payload; returns null if you call raw Cells().

Methods

S. No. Methods and Description

1 byte[] getValue(byte[] family, byte[] qualifier)

This method is used to get the latest version of the specified column.

2 byte[] getRow()

This method is used to retrieve the row key that corresponds to the
row from which this Result was created.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

HBase

74

Creating Data

This chapter demonstrates how to create data in an HBase table. To create data

in an HBase table, the following commands and methods are used:

 put command,

 add() method of Put class, and

 put() method of HTable class.

As an example, we are going to create the following table in HBase.

Using put command, you can insert rows into a table. Its syntax is as follows:

put ’<table name>’,’row1’,’<colfamily:colname>’,’<value>’

Inserting the First Row

Let us insert the first row values into the emp table as shown below.

hbase(main):005:0> put 'emp','1','personal data:name','raju'

0 row(s) in 0.6600 seconds

hbase(main):006:0> put 'emp','1','personal data:city','hyderabad'

0 row(s) in 0.0410 seconds

16. CREATE DATA

HBase

75

hbase(main):007:0> put 'emp','1','professional

data:designation','manager'

0 row(s) in 0.0240 seconds

hbase(main):007:0> put 'emp','1','professional data:salary','50000'

0 row(s) in 0.0240 seconds

Insert the remaining rows using the put command in the same way. If you insert

the whole table, you will get the following output.

hbase(main):022:0> scan 'emp'

ROW COLUMN+CELL

 1 column=personal data:city, timestamp=1417524216501, value=hyderabad

 1 column=personal data:name, timestamp=1417524185058, value=ramu

 1 column=professional data:designation, timestamp=1417524232601,

 value=manager

 1 column=professional data:salary, timestamp=1417524244109, value=50000

 2 column=personal data:city, timestamp=1417524574905, value=chennai

 2 column=personal data:name, timestamp=1417524556125, value=ravi

 2 column=professional data:designation, timestamp=1417524592204,

 value=sr:engg

 2 column=professional data:salary, timestamp=1417524604221, value=30000

 3 column=personal data:city, timestamp=1417524681780, value=delhi

 3 column=personal data:name, timestamp=1417524672067, value=rajesh

 3 column=professional data:designation, timestamp=1417524693187,

 value=jr:engg

 3 column=professional data:salary, timestamp=1417524702514,

HBase

76

 value=25000

Inserting Data Using Java API

You can insert data into Hbase using the add() method of the Put class. You

can save it using the put() method of the HTable class. These classes belong to

the org.apache.hadoop.hbase.client package. Below given are the steps to

create data in a Table of HBase.

Step 1: Instantiate the Configuration Class

The Configuration class adds HBase configuration files to its object. You can

create a configuration object using the create() method of the

HbaseConfiguration class as shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class

is used to communicate with a single HBase table. While instantiating this class,

it accepts configuration object and table name as parameters. You can

instantiate HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Put Class

To insert data into an HBase table, the add() method and its variants are used.

This method belongs to Put, therefore instantiate the put class. This class

requires the row name you want to insert the data into, in string format. You can

instantiate the Put class as shown below.

Put p = new Put(Bytes.toBytes("row1"));

Step 4: Insert Data

The add() method of Put class is used to insert data. It requires 3 byte arrays

representing column family, column qualifier (column name), and the value to

be inserted, respectively. Insert data into the HBase table using the add()

method as shown below.

p.add(Bytes.toBytes("coloumn family "), Bytes.toBytes("column

name"),Bytes.toBytes("value"));

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

HBase

77

Step 5: Save the Data in Table

After inserting the required rows, save the changes by adding the put instance

to the put() method of HTable class as shown below.

hTable.put(p);

Step 6: Close the HTable Instance

After creating data in the HBase Table, close the HTable instance using the

close() method as shown below.

hTable.close();

Given below is the complete program to create data in HBase Table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.util.Bytes;

public class InsertData{

 public static void main(String[] args) throws IOException {

 // Instantiating Configuration class

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable hTable = new HTable(config, "emp");

 // Instantiating Put class

 // accepts a row name.

 Put p = new Put(Bytes.toBytes("row1"));

HBase

78

 // adding values using add() method

 // accepts column family name, qualifier/row name ,value

 p.add(Bytes.toBytes("personal"),

 Bytes.toBytes("name"),Bytes.toBytes("raju"));

 p.add(Bytes.toBytes("personal"),

 Bytes.toBytes("city"),Bytes.toBytes("hyderabad"));

 p.add(Bytes.toBytes("professional"),Bytes.toBytes("designation"),

 Bytes.toBytes("manager"));

 p.add(Bytes.toBytes("professional"),Bytes.toBytes("salary"),

 Bytes.toBytes("50000"));

 // Saving the put Instance to the HTable.

 hTable.put(p);

 System.out.println("data inserted");

 // closing HTable

 hTable.close();

 }

}

Compile and execute the above program as shown below.

$javac InsertData.java

$java InsertData

The above compilation works only if you have set the classpath in “ .bashrc ”. If

you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

HBase

79

data inserted

HBase

80

Updating Data

You can update an existing cell value using the put command. To do so, just

follow the same syntax and mention your new value as shown below.

put ‘table name’,’row ’,'Column family:column name',’new value’

The newly given value replaces the existing value, updating the row.

Example

Suppose there is a table in HBase called emp with the following data.

hbase(main):003:0> scan 'emp'

ROW COLUMN+CELL

 row1 column=personal:name, timestamp=1418051555, value=raju

 row1 column=personal:city, timestamp=1418275907, value=Hyderabad

 row1 column=professional:designation, timestamp=14180555,value=manager

 row1 column=professional:salary, timestamp=1418035791555,value=50000

1 row(s) in 0.0100 seconds

The following command will update the city value of the employee named ‘Raju’

to Delhi.

hbase(main):002:0> put 'emp','row1','personal:city','Delhi'

0 row(s) in 0.0400 seconds

17. UPDATE DATA

HBase

81

The updated table looks as follows where you can observe the city of Raju has

been changed to ‘Delhi’.

hbase(main):003:0> scan 'emp'

 ROW COLUMN+CELL

row1 column=personal:name, timestamp=1418035791555, value=raju

row1 column=personal:city, timestamp=1418274645907, value=Delhi

row1 column=professional:designation, timestamp=141857555,value=manager

row1 column=professional:salary, timestamp=1418039555, value=50000

1 row(s) in 0.0100 seconds

Updating Data Using Java API

You can update the data in a particular cell using the put() method. Follow the

steps given below to update an existing cell value of a table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can create

a configuration object using the create() method of the HbaseConfiguration

class as shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class

is used to communicate with a single HBase table. While instantiating this class,

it accepts the configuration object and the table name as parameters. You can

instantiate the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

HBase

82

Step 3: Instantiate the Put Class

To insert data into HBase Table, the add() method and its variants are used.

This method belongs to Put, therefore instantiate the put class. This class

requires the row name you want to insert the data into, in string format. You can

instantiate the Put class as shown below.

Put p = new Put(Bytes.toBytes("row1"));

Step 4: Update an Existing Cell

The add() method of Put class is used to insert data. It requires 3 byte arrays

representing column family, column qualifier (column name), and the value to

be inserted, respectively. Insert data into HBase table using the add() method

as shown below.

p.add(Bytes.toBytes("coloumn family "), Bytes.toBytes("column

name"),Bytes.toBytes("value"));

p.add(Bytes.toBytes("personal"),
Bytes.toBytes("city"),Bytes.toBytes("Delih"));

Step 5: Save the Data in Table

After inserting the required rows, save the changes by adding the put instance

to the put() method of the HTable class as shown below.

hTable.put(p);

Step 6: Close HTable Instance

After creating data in HBase Table, close the HTable instance using the close()

method as shown below.

hTable.close();

Given below is the complete program to update data in a particular table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

HBase

83

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.util.Bytes;

public class UpdateData{

 public static void main(String[] args) throws IOException {

 // Instantiating Configuration class

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable hTable = new HTable(config, "emp");

 // Instantiating Put class

 //accepts a row name

 Put p = new Put(Bytes.toBytes("row1"));

 // Updating a cell value

 p.add(Bytes.toBytes("personal"),

 Bytes.toBytes("city"),Bytes.toBytes("Delih"));

 // Saving the put Instance to the HTable.

 hTable.put(p);

 System.out.println("data Updated");

 // closing HTable

 hTable.close();

 }

}

HBase

84

Compile and execute the above program as shown below.

$javac UpdateData.java

$java UpdateData

The above compilation works only if you have set the classpath in “.bashrc”. If

you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

data Updated

HBase

85

Reading Data

The get command and the get() method of HTable class are used to read data

from a table in HBase. Using get command, you can get a single row of data at

a time. Its syntax is as follows:

get ’<table name>’,’row1’

The following example shows how to use the get command. Let us scan the first

row of the emp table.

hbase(main):012:0> get 'emp', '1'

COLUMN CELL

personal : city timestamp=1417521848375, value=hyderabad

personal : name timestamp=1417521785385, value=ramu

professional: designation timestamp=1417521885277, value=manager

professional: salary timestamp=1417521903862, value=50000

4 row(s) in 0.0270 seconds

Reading a Specific Column

Given below is the syntax to read a specific column using the get method.

hbase>get 'table name', ‘rowid’, {COLUMN => ‘column family:column name ’}

18. READ DATA

HBase

86

Given below is the example to read a specific column in HBase table.

hbase(main):015:0> get 'emp', 'row1', {COLUMN=>'personal:name'}

 COLUMN CELL

 personal:name timestamp=1418035791555, value=raju

1 row(s) in 0.0080 seconds

Reading Data Using Java API

To read data from an HBase table, use the get() method of the HTable class.

This method requires an instance of the Get class. Follow the steps given below

to retrieve data from the HBase table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can create

a configuration object using the create() method of the HbaseConfiguration

class as shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class

is used to communicate with a single HBase table. While instantiating this class,

it accepts the configuration object and the table name as parameters. You can

instantiate the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Get Class

You can retrieve data from the HBase table using the get() method of the

HTable class. This method extracts a cell from a given row. It requires a Get

class object as parameter. Create it as shown below.

Get get = new Get(toBytes("row1"));

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

HBase

87

Step 4: Read the Data

While retrieving data, you can get a single row by id, or get a set of rows by a

set of row ids, or scan an entire table or a subset of rows.

You can retrieve an HBase table data using the add method variants in Get

class.

To get a specific column from a specific column family, use the following

method.

get.addFamily(personal)

To get all the columns from a specific column family, use the following method.

get.addColumn(personal, name)

Step 5: Get the Result

Get the result by passing your Get class instance to the get method of the

HTable class. This method returns the Result class object, which holds the

requested result. Given below is the usage of get() method.

Result result = table.get(g);

Step 6: Reading Values from the Result Instance

The Result class provides the getValue() method to read the values from its

instance. Use it as shown below to read the values from the Result instance.

byte [] value =

result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));

byte [] value1 =

result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("city"));

Given below is the complete program to read values from an HBase table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.Get;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Result;

HBase

88

import org.apache.hadoop.hbase.util.Bytes;

public class RetriveData{

 public static void main(String[] args) throws IOException, Exception

 {

 // Instantiating Configuration class

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable table = new HTable(config, "emp");

 // Instantiating Get class

 Get g = new Get(Bytes.toBytes("row1"));

 // Reading the data

 Result result = table.get(g);

 // Reading values from Result class object

 byte [] value =

 result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("name"));

 byte [] value1 =

 result.getValue(Bytes.toBytes("personal"),Bytes.toBytes("city"));

 // Printing the values

 String name = Bytes.toString(value);

 String city = Bytes.toString(value1);

 System.out.println("name: "+ name + " city: "+city);

 }

}

HBase

89

Compile and execute the above program as shown below.

$javac RetriveData.java

$java RetriveData

The above compilation works only if you have set the class path in “ .bashrc ”.

If you haven't, follow the procedure given below to compile your .java file.

//if "/home/home/hadoop/hbase" is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

name: Raju city: Delhi

HBase

90

Deleting a Specific Cell in a Table

Using the delete command, you can delete a specific cell in a table. The syntax

of delete command is as follows:

delete ‘<table name>’, ‘<row>’, ‘<column name >’, ‘<time stamp>’

Here is an example to delete a specific cell. Here we are deleting the salary.

hbase(main):006:0> delete 'emp', '1', 'personal data:city',

1417521848375

0 row(s) in 0.0060 seconds

Deleting All Cells in a Table

Using the “deleteall” command, you can delete all the cells in a row. Given below

is the syntax of deleteall command.

deleteall ’<table name>’,’<row>’

Here is an example of “deleteall” command, where we are deleting all the cells

of row1 of emp table.

hbase(main):007:0> deleteall 'emp','1'

0 row(s) in 0.0240 seconds

Verify the table using the scan command. A snapshot of the table after deleting

the table is given below.

hbase(main):022:0> scan 'emp'

ROW COLUMN+CELL

 2 column=personal data:city, timestamp=1417524574905, value=chennai

19. DELETE DATA

HBase

91

 2 column=personal data:name, timestamp=1417524556125, value=ravi

 2 column=professional data:designation, timestamp=1417524204, value=sr:engg

 2 column=professional data:salary, timestamp=1417524604221, value=30000

 3 column=personal data:city, timestamp=1417524681780, value=delhi

 3 column=personal data:name, timestamp=1417524672067, value=rajesh

 3 column=professional data:designation, timestamp=1417523187, value=jr:engg

 3 column=professional data:salary, timestamp=1417524702514, value=25000

Deleting Data Using Java API

You can delete data from an HBase table using the delete() method of the

HTable class. Follow the steps given below to delete data from a table.

Step 1: Instantiate the Configuration Class

Configuration class adds HBase configuration files to its object. You can create

a configuration object using the create() method of the the

HbaseConfiguration class as shown below.

Configuration conf = HbaseConfiguration.create();

Step 2: Instantiate the HTable Class

You have a class called HTable, an implementation of Table in HBase. This class

is used to communicate with a single HBase table. While instantiating this class,

it accepts the configuration object and the table name as parameters. You can

instantiate the HTable class as shown below.

HTable hTable = new HTable(conf, tableName);

Step 3: Instantiate the Delete Class

Instantiate the Delete class by passing the rowid of the row that is to be

deleted, in byte array format. You can also pass timestamp and Rowlock to this

constructor.

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

HBase

92

Delete delete = new Delete(toBytes("row1"));

Step 4: Select the Data to be Deleted

You can delete the data using the delete methods of the Delete class. This class

has various delete methods. Choose the columns or column families to be

deleted using those methods. Take a look at the following examples that show

the usage of Delete class methods.

delete.deleteColumn(Bytes.toBytes("personal"), Bytes.toBytes("name"));

delete.deleteFamily(Bytes.toBytes("professional"));

Step 5: Delete the Data

Delete the selected data by passing the delete instance to the delete() method

of the HTable class as shown below.

table.delete(delete);

Step 6: Close the HTable Instance

After deleting the data, close the HTable Instance.

table.close();

Given below is the complete program to delete data from the HBase table.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.Delete;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.util.Bytes;

public class DeleteData {

 public static void main(String[] args) throws IOException {

HBase

93

 // Instantiating Configuration class

 Configuration conf = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable table = new HTable(conf, "employee");

 // Instantiating Delete class

 Delete delete = new Delete(Bytes.toBytes("row1"));

 delete.deleteColumn(Bytes.toBytes("personal"), Bytes.toBytes("name"));

 delete.deleteFamily(Bytes.toBytes("professional"));

 // deleting the data

 table.delete(delete);

 // closing the HTable object

 table.close();

 System.out.println("data deleted.....");

 }

}

Compile and execute the above program as shown below.

$javac Deletedata.java

$java DeleteData

The above compilation works only if you have set the classpath in “ .bashrc ”. If

you haven't, follow the procedure given below to compile your .java file.

HBase

94

//if "/home/home/hadoop/hbase " is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

data deleted

HBase

95

scan

The scan command is used to view the data in HTable. Using the scan

command, you can get the table data. Its syntax is as follows:

scan ‘<table name>’

The following example shows how to read data from a table using the scan

command. Here we are reading the emp table.

hbase(main):010:0> scan 'emp'

ROW COLUMN+CELL

 1 column=personal data:city, timestamp=1417521848375, value=hyderabad

 1 column=personal data:name, timestamp=1417521785385, value=ramu

 1 column=professional data:designation, timestamp=1417585277,value=manager

 1 column=professional data:salary, timestamp=1417521903862, value=50000

1 row(s) in 0.0370 seconds

Scanning Using Java API

The complete program to scan the entire table data using java API is as follows.

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.hbase.HBaseConfiguration;

import org.apache.hadoop.hbase.client.HTable;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.client.ResultScanner;

20. HBASE SCAN

HBase

96

import org.apache.hadoop.hbase.client.Scan;

import org.apache.hadoop.hbase.util.Bytes;

public class ScanTable{

 public static void main(String args[]) throws IOException{

 // Instantiating Configuration class

 Configuration config = HBaseConfiguration.create();

 // Instantiating HTable class

 HTable table = new HTable(config, "emp");

 // Instantiating the Scan class

 Scan scan = new Scan();

 // Scanning the required columns

 scan.addColumn(Bytes.toBytes("personal"), Bytes.toBytes("name"));

 scan.addColumn(Bytes.toBytes("personal"), Bytes.toBytes("city"));

 // Getting the scan result

 ResultScanner scanner = table.getScanner(scan);

 // Reading values from scan result

 for (Result result = scanner.next(); result != null; result =

 Scanner.next())

 System.out.println("Found row : " + result);

 //closing the scanner

 scanner.close();

HBase

97

 }

}

Compile and execute the above program as shown below.

$javac ScanTable.java

$java ScanTable

The above compilation works only if you have set the classpath in “ .bashrc ”. If

you haven't, follow the procedure given below to compile your .java file.

//if “/home/home/hadoop/hbase” is your Hbase home folder then.

$javac -cp /home/hadoop/hbase/lib/*: Demo.java

If everything goes well, it will produce the following output:

Found row :

keyvalues={row1/personal:city/1418275612888/Put/vlen=5/mvcc=0,

row1/personal:name/1418035791555/Put/vlen=4/mvcc=0}

HBase

98

count

You can count the number of rows of a table using the count command. Its

syntax is as follows:

count ‘<table name>’

After deleting the first row, emp table will have two rows. Verify it as shown

below.

hbase(main):023:0> count 'emp'

2 row(s) in 0.090 seconds

=> 2

truncate

This command disables drops and recreates a table. The syntax of truncate is

as follows:

hbase> truncate 'table name'

Given below is the example of truncate command. Here we have truncated the

emp table.

hbase(main):011:0> truncate 'emp'

Truncating 'one' table (it may take a while):

 - Disabling table...

 - Truncating table...

0 row(s) in 1.5950 seconds

After truncating the table, use the scan command to verify. You will get a table

with zero rows.

hbase(main):017:0> scan ‘emp’’

ROW COLUMN+CELL
0 row(s) in 0.3110 seconds

21. COUNT AND TRUNCATE

HBase

99

We can grant and revoke permissions to users in HBase. There are three

commands for security purpose: grant, revoke, and user_permission.

grant

The grant command grants specific rights such as read, write, execute, and

admin on a table to a certain user. The syntax of grant command is as follows:

hbase> grant <user> <permissions> [<table> [<column family> [<column

qualifier>]]

We can grant zero or more privileges to a user from the set of RWXCA, where

 R - represents read privilege.

 W - represents write privilege.

 X - represents execute privilege.

 C - represents create privilege.

 A - represents admin privilege.

Given below is an example that grants all privileges to a user named

‘Tutorialspoint’.

hbase(main):018:0> grant 'Tutorialspoint', 'RWXCA'

revoke

The revoke command is used to revoke a user's access rights of a table. Its

syntax is as follows:

hbase> revoke <user>

The following code revokes all the permissions from the user named

‘Tutorialspoint’.

hbase(main):006:0> revoke 'Tutorialspoint'

22. HBASE SECURITY

HBase

100

user_permission

This command is used to list all the permissions for a particular table. The

syntax of user_permission is as follows:

hbase>user_permission ‘tablename’

The following code lists all the user permissions of ‘emp’ table.

hbase(main):013:0> user_permission 'emp'

