010010110100 =
81 00101101
]

tutorialspoint

S I MPLYEASYLIE-ARNINLG

www.tutorialspoint.com

ﬂ https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Apache Pig

About the Tutorial

Apache Pig is an abstraction over MapReduce. It is a tool/platform which is used to analyze
larger sets of data representing them as data flows. Pig is generally used with Hadoop;
we can perform all the data manipulation operations in Hadoop using Pig.

Audience

This tutorial is meant for all those professionals working on Hadoop who would like to
perform MapReduce operations without having to type complex codes in Java.

Prerequisites

To make the most of this tutorial, you should have a good understanding of the basics of
Hadoop and HDFS commands. It will certainly help if you are good at SQL.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

@' \tutorialspoint

EIMPLYEAGSGYLEARMING

mailto:contact@tutorialspoint.com

Apache Pig

Table of Contents

ADOUL TNE TULOITAL c.eviiiiieeiie ettt ettt s e e b e e s abe e bt e e sabeesateesabeesateesabeesaseesabaesaseenas i

F Y0 Lo [T o ol OO TSSO UPRRUPPUORRTRN i

e =T =T o UL =TT PP TP PO PPPPPTRTRN i
(00T 0}V T4 o A D T =1 ' =Y SRR i

BRI o (o] o] 01 =Y o} £ PRSP PPTTP i
PART 1: INTRODUCTION.......uuuiteiiii s s nansn s nnnnnnnnnnnsnnnnnnnnnnnnn 1
1. APACRE Pig — OVEIVIEW ...ceiiiiiiiiiiiiiiiiiiicincsieiiiiieees s s s s s s s s s s e s s s s s s s s e s s s s s s s s s s s s s sssssessesssssssssssssssssssnsnnsnsnnnnns 2
WAt IS APACHE PIZ? oottt et e s e e et e e e e tte e e st e e e e ataeeseasseeesassaaeestaeesansteeessseeeanstseeennes 2
Why DO We NEEA APACNE PIg2 ... ittt ettt e ettt e e st e e e e s ta e e e eataae e stbaee e ataeesensteeesassasaeanssesannses 2
[T Y UL =T o) i o TSRS 2
APAChE Pig VS IMAPREAUCEvvieiiiie ettt ettt e e ettt e e et e e e s tbe e e e s ataeeeeataeeesssaeeesstaeeeensaasesassaeaensteeeannses 3
APACHE PIZ VS SOL ...ttt ettt ettt ettt ettt ettt ettt et e bt esat e s bt e e sht e e bt e e shse e bt e e sabe e st e e sabeesseeesabeesaneesabeenaneenn 3
APACHE PIZ VS HIVE ..ottt ettt b e st e e e bt e s a b e e bt e e sab e e e ae e e sabeesaeeesabeesnneesabeesaneens 4
APPCAtIONS OFf APACNE PIg .ottt ettt ettt e st e e st e e sabeesae e e sabeesaneesabeesaneens 4
APACHE P = HISTOIY .ttt ettt sh e st e bt e s a e e bt e e s ab e e s bt e e sabeesaeeesabeesaneesabeesaneens 5

IRV o Y-Yol s TN S0l N ol a1 =T ot 1] o =N 6
APACNE Pig — COMPONENTS...cutiiiieeiiee e ciiee e ettt e e e ettt e e stte e e et teeeeetaeeestbeseesataeeeesssaeesassaseastaeesasssseesassesaaasssesnnnses 7

Pig Latin — Data IMOTEIvieeciiei ettt ettt e e et e e e et e e e e tbe e e e eabaeeeeastaeesaaaaaesabaeaeessaeeeansaaesaseeaaans 7
PART 2: ENVIRONMENTotttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiabsisiarsrsesasisrrrbarasasarasasasasasasasasassesensnsnnnnns 9
3. Apache Pig — INStallation......ccccceeeeeiiiiiiiiiiccccrrrrcreescses s reerees s sse e s e e e snnssssseessesennssssssssssennnnsssssssssennnnnssnnns 10
[T = To TR = PP PPP PR 10
(D101 g Fo T I o ¥- Yol d V- - SR 10

T 1 =Y LY o T= Yo o T =P 13
CONTIGUIE APACNE Pl ..eveeeieeiiee ettt ettt e e et e e e ettt e e st e e e e s taeeseasteeessseeeeasteeesansseeesnseeeenssaeesnnnes 14

4. APAChe Pig — EXECULIONciiiieeeeeciiiiiieiienccisrireenensssesseeeennnssssssssssennnssssssssseennnsssssssssssnnnsssssssssssnnnnsssssssnnes 16
ApPAChe Pig — EXECULION IMOUES ...vviiiiiiieiiiiiiiee ettt e ettt e e e e e sttt e e e e e e s e aaata e e e e e e seasstaeseeeesennstbaneeeseannns 16
Apache Pig — EXeCUtion IMECNANISIMSuiiiiiiii ettt et e e e e e e et e e e e e e s esaberaeseeeesensnstaaeeeeseannns 16
INVOKING the GIUNT SNEIL....ceeeiiieeeee e e e s et e e e e e s et e e e e e e s e s aebaeeeeeesesnsbaaneaaens 16
Executing Apache Pig in BatCh IMOGEcoeeiiiiiieiee ettt e e e e e e et e e e e e e s e s ansaaneaee s 17

LT €1 T T 20 4T | 18
SNEIT COMMEANTS 1.ttt ettt sa e e st e e sa b e e sab e e sabeesabeesabeesabeesabeesabeesabeesabeesateesnseesasaesaseens 18

L1 LY o ' 4 =T Vo -3 19

o T I T o [A I | PP 25
6. Pig Latin — BaSICS ..cceeirrereuunciiiiiieiiennceiriieennesseessseeennnssssssseeennsssssssssesesnnsssssssssesennssssssssseesnnnssssssssssennnnssnnns 26
Pig Latin — DAt@ IMOUEL........ouiieieeeeeeeeee ettt st b e s bt bt et e et e st e besbesbesaeeneeneens 26

= I T T =Y =Y 0 0= SN 26

T I LT T D) - IR A/ o 1TSS 27
INUITVAIUBS ..ttt st s e e s e s it e s a b e e s bt e e s bt e e bt e e sabeesateesabe e bt e e sabeensaeesabeensteesaseennes 27

Pig Latin — ArithmMeEtic OPEratorsuiiicciiieccieeectiee e ee e e e et e e e et e e e s te e e e s taeeesnseeesssaeeeensteeeseneeeessseneans 28
i

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Pig Latin — COMPAriSON OPEIatOrSuuuueuereuurer——————————————————————.—————————.—.......————————————. 28

Pig Latin — Type CoONSErUCTION OPEIatorS ... uuuuuuuuererereiuieiereierererererererererererererereree.——————————————————————.........—.———.——— 29

Pig Latin — Relational OPEratioNnsccccuiiiiiiiie ettt e et e st e e et e e e s eae e e ssbeeeestaeeeennaeeesnreeaans 29
PART 4: LOAD AND STORE OPERATORS.......euu s 32
7. Apache Pig -- Reading Datacceeiiiiiiiiienreiiiiiiiiiieereeiiisiisssssessssssssssssssessssssssssssssessssssssssssssssssssssssssnssnns 33
Preparing HDFSottt s e e s e b e e e s r e e e sb e e e s e s b e s e s ra e e e snreeeeas 33

R ek 1o @] o 1T =1 o PRSP PPPRR 35

LTI o T = 0 T | - TP TPPN 38
PART 5: DIAGNOSTIC OPERATORS.....uutttititiiiiiiiiiiiiiiiiieiaraiarararaiarararerarararararararararararararanararararann. 41
9. DiIagNOStIC OPEIrators ... ccciiiiiereeeiiiiiiiiieteniiietiieennnssiseesireennsssssssssssennsssssssssssssnnssssssssssssnnssssssssssssnnnssssssssans 42
D 10T o g] @ o L] - | (o] APPSO ON 42

L0 TR 0 T o T ¢T3 0 ' T 1 o1 Y 46
8 B o 11 T 0. oY1 - o T Y 47
B 11TV =T = 0 T4 T4 T o T 51
PART 6: GROUPING AND JOININGuuuuuuiuiuiuiiiuiuiiiuineeiraearaearanaeaennnennnnnnnnnnananannnannnnnnsnnnsnsnsnsnnns 52
IS T T 10T o T 0 T o T=T - | o T 53
Grouping by MUIPIE COIUMNS....ccii e e e e e e st e e e e e e e e abbtaeeesesseesnstaeeeesesennnsens 54

(G oYU o 1A | PP PURPNS 55

I S o T = o 10T o T T« 7= - 1 o T 56
Grouping TWO Relations USING COBIOUP ..uviiiiiiiiiiiiiieeeeeiititree e e e e secttree e e e e settatreeeeeesesbstaeeesessesssssneeeesssennsnsees 56

BTN 10T 14 T 0 oY= 1 o 58
T 0 T=1 o o T o PSSP PP PPN 58

Y=Y o 1o TSRS 59

(O 101 4=1 g o T o P PP PP P OUPRROTRPRORE 60
USING MUITIPIE KBYS ...veeeeeieieetiee ettt e ee et eett e e sttt e e st e e st eeesabaeeeesateeessaeeeesstaeeeanseeessanaeeeansseeesansneeesnsseneann 63

BT O o T3 0 o =T -) o 65
PART 7: COMBINING AND SPLITTINGuuuuitiiiiiiiiiiiiiiiiiiiiiataiaiaiaiarataiaiaiaiaianaaraaraaaaaaaaa.a... 68
17. UNION OPEIator........cciiiiieieeeciierieeeeessseessreresnmssssesseeesnmsssssssseeesnmsssssssssessnnsssssssssssennnssssssssesssnnnssssssssssnnnnns 69
Bt TY o 110 o =T - 1 1 o1 T 71
PART 8: FILTERINGotttieieiiiiiiiiiitneeee e seriirireees e s s s e seanerenese s e s e sessssnenenesesssesensnsnenenesesssssennnnenenens 73
T] =T g0 1= - | o] O PPRPPPRY 74
iii

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

L0 TR 0 TE3 14 Lot g0 o T=T - o N 76
P2 B o =T Tel s T 0 o T=T =1 o T N 78
e RIS TR @ 1 I | 80
22, OF0Er BY .ccceeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeseesss 81
P TR 14 0 T3 0. o =T - o T 83
PART 10: PIG LATIN BUILT-IN FUNCTIONS......coitiiiiieirieee e eeccrrere e e e e e e e enneneee e e s e se s snnnneneees 85
S Y T oL T T T T 86
[V | I ST ot e Yo - PSSR P RSP 86
AVG ..ottt ettt ettt et et e e bt e e bt et e e e b et e b et e bt e e bt e e be e e bee e b et e bee e be e e b ae e b et e ntte e beeenateebaeenbeeeras 87
Y= 3 PP UUPU PP 88

11 T PSSP OTPTOPPO 90
(000 18 o} S UPPPRN 92
COUN T ST AR ettt et et e e et e e et et et e e e e et et e e e e e e e e areeeeeeesasenens 93
11U T o T UPPPRN 95
D PP 97

LU 2 13V Y USSP 99

£y =10 0T o 1 0 PPN 101

[IO ol S UYL USRS 103

2= () ISP 105
Y= Ko N A4 o= (O SRS RRR 106

(00T Tor- | A () ISR 108
TOKENIZE () cuveeeeeeteeeeeeeee e et eete et e e e et e e e eetae e e e e tteeeeeaeeeeseaaeeeeasteeeeeaseeeesseseensseeeeasseeeeaseeeeennsreeeaneeas 110

25. Load and StOre FUNCHIONS.......cccceeeiiiiiiiiiineneiiiiiniisinesenessissssssseessssssssssssssssssssssssssssesssssssssssnnssesssssssssnns 113
TRy o) =YY (OSSR 113

B Mo To [=] o U TR PSP UPUPRRRRUPOt 114

21 e N] o] =TI U PR URURRR 115

(s e |1 TaY = @] g o] F 11 o] o FON ST 117

26. Bag and TUPle FUNCLIONScoiiiirieeeiciiiiiiiiieescceserieennessesssseennnssssssssesesnnsssssssssssennnsssssssssssnnnnsssssssssennnnns 118
TOBAG () eeveeeruueeitereniteeiteeesteesteestaeesseeesseeesteeesseeasseeesseeassseessseessseessseasseeessseessssessseessseesnseessseesseensseessseesssees 118
L] (B P P TSP P P T USSR RUPTOTPROUPN 119
TOTUPLE () +etetteettteitteeitteertte ettt stte ettt st e e sttt e sbte e bt e e sbteesaee e sate e bt e e sabe e st eessbeesabeesabeesaseesabeesaseesabeesaseesaraenaseens 121
TOMAP () ettt ettt ettt ettt ettt ettt sh et e s bt e e bt e e s hte e bt e e s ht e e ae e e sh b e e bt e e sa b e e sabeesabeeeabeesa b e e nabeesabeenateesabaenaree s 122

27. STFING FUNCHIONS ...uuiiiiiiiiiniiiiiiiiienenniissiiineesssssssssiimeessnnnss 123
STARTSWITH () eteeeutteitieentterite ettt ettt ettt ettt et ettt e s bt e e bt e e sbt e e bt e e sb b e e bt e e bt e e bt e e sabeebeeesabeesteesasesseeesaseenees 124

L D YT 1 I TN 126
SUBSTRING ..ottt ettt ettt e e e e et e e e e et et e e e e e e et e e e e e e et et e e et et et et e e et e e et et aeataratataeeeeteeerererererererererererenens 127

o[V]] Fo{g Lo =T O 1Y ISR 128
INDEXOF () evveeeeeeeeeeeeeeeeeeeseeeeseseeseseseseeseseseeseseesseaeseeesesesseseesessseseesesseeesesseseseesesesesensesesesesesseseesseeseseneeseenesaes 129
LAST_INDEX_OF () teveeeteeerueeeteeenite ettt esite sttt e sttessteeesbte s st eesbteessaeesaeeessteesaseessteesasaessteesabeesaseesabeesaseesaseesnseess 131
LCFIRST () suveeeuteesteeeteesteeeitee sttt estte ettt e bt e s bt esbte sttt e bt e eabeeebteeabeeesaeeeabteesabeebeeesabeesbeesabeenseeesabeesaseesaseesnneens 132
UCFIRST () tvteeteeeteeeteeeiee st e st e sttt et e st e st e st e eateesabeesabeesabeeeabeesabeesaseesabeeeabeesabeesaseesabeesaseesabaesabeesabaasaneesn 133
UPPER () +eeeteeeteeeitteeteesiteesteeertteste e sttesabe e sateesabeesabeesabaesabeesabeesabeesabeesaseesabeeeabeesabeesabeesabeeeaseesabeesabeesabaesnseesn 134
iv

EIMPLYEAGSGYLEARMING

w \tutorialspoint

28.

29.

Apache Pig

LOWER ()vrtveeeeeeeeeeseeseeseeseesseseessessesseesesseseeesesseseeseeseesteseesseseeseeeeesseseeseaeseseaeeeseeseessassessensassaneessessessesseesassenes 136
REPLACE () cvrvveeeeeeteseeseaseeseeseeseessessesseeseseeseesseseeseeseeseesteseesseseassaseesseseeseaseeseeseesseseeesessesseneassaneessessessessessaseenes 137
STRSPLIT (1) evvrvveeeeeeseeseeseesseseessessesseseeseeseesseseesseseeseeseeseeseeseeseeseeseeseeeeeeeesteseeseeseeseeseeseassessesseeseseeseessessessessans 138
STRSPLITTOBAG ()ereeeeeeeeeeeeeeeeeeeeeseeeeesseseeseeseessesseesessesseesesseseesseeseseessessassessessessessesseesessessesseeseesessessessaenen 139
TEIM () cureeeeeitie e e ettt et et e e ettt e e ettt e e e e tbeeeeeaaeeeeetaeeeeatbeeeeeasaeeeeassseeeastseeeessaeeebbeeeeaateeeeeanaeeeatreeeeanteeeeaareeas 141
LTRIM (1) e e e eeeeeeeeeeeeee e eeeseeeseeee e s seeseeeeeeeeeseseeeeeeeseeeseeeeseeeeeeeeeeeeeaeeaeeeseeeeeeesseseseeaeseseeaessaeseeeeseeeeeeneen 142
RTRIM ettt r e e et ettt e s e e e e e et ta b e s e e e e e e e ta s seeeeeeassaaseeeeaassaaaneeeeeenssannnsseeeeennssnnnseeeenees 143
Lo E T ATy s T= T LT T ot ' 13N 145
JLICe1 0 T (PR 147
LCT=Y TV (TSI 148
LG i oYU TSI 149
Oy oYU L < (ISR 150
[CT=T AY=Tele oo N (ISP 151
LCT=L A\ TR =TeTo T T N) ISR 152
L=y =T | S UPRRRRINt 153
LCT=T A\ o 014 T RSP SP 154
Oy AT AT LT (0 TSRS 156
GEEWEEKYEAN () 1eieurieeeiitiie e ettt e ettt e e ettt e e e et e e e ettt e e e tbeeeesttaeaeestaeesassaaeesabaeeaassseesansaaeeasssaeeanssasesansaneesnsseaanns 157
(ST =T ol o I oY= (O ISR 158
Lo} 4 [Y= (0 RSP 159
DNV ST AV =T=T o T TSRS 160
(o [o T] 2Ty AT Y=Y o T TR USSR 161
IMINUEESBETWEEN () cuveeiutiiiiieeitieeiiteeteeeette et e e steeete e e stae e teeestae e saeesateessaeesaseeasseesssaaasseesssaeasseesnseesnsessnseenssensn 161
Y=Tete] Yo K= Y=Y AV T =TT o N (RSP SOR 162
MIIlISECONASBEIWEEN () cenvveiiiireeeeiieieeeeteee ettt etee e ettt e e eete e e e eteeeeeeaaeeeeesaeeeeeteeeeensseeeensseeeeensreesensreeeennnneas 163
YEAISBEEWEEN () urieeeuiieiiiiiee et e eete e e ettt e e sttt e e ettt e e e e abaee e sbbeeeeaataeeeeasteeessssaaeastaeeeenssaeesssaaeeastseeeanssseesansenas 164
[V oY 0 a1 21 AT YZ=T=T o 1 (OSSR PR 165
WEEKSBEEWEEN () couriieiiiiiie ettt e ettt e ettt e e ettt e e ettt e e e tae e e s ba e e e e abaeeeeastaeessseaeeastaeeeenssaeesnsbaaeeastseseansseeesansenas 166
1Yo Lo 1D LU T -4 L] o TN U RSP USSP 167
N0 o1 a = Tot DTN =Y u ol T () TSP USSP 168
LY T a1 Tt T 4T3 170
Y2 SR URSOt 171
Y00 (U RSURRROY 172
N | N IS SRUURROt 174
ATAN ()-eerteeeeeeeeeeeeeeeeeeeseeseeeeeeeeeeeseeseeseeseeseeeeeseeeseeeeeseseeeeesteeeeseeseeeeeeeeeeeeeeeteseeseeeee et eeeeseeeeeseeeeeeeeeeaseeeseeeeseeesans 175
CBRT (1) vevreeeeeeeeeeeeeeeseeeeesestessesessaeseseseeeeeeeeseeseeeseaeseseeseeseseeseesesessesseseseeseteseeseseeeseeeseeeseeeseeeeeaeseeeeeesseesseeseens 176
CEIL () veeveeeeeeeeeeeeeees e e eeee e e eeeeaeeeseeeeeeeeeeeeeseeeeeeeseseesaeseeeeseeseseeseeeeees e eseeaeeseseseeeeeseseeeeeseseeseeeeseeeeeeeseeneeeneens 177
COS () evrveereeeeeeeeeeeeeeeesee e e e e eeeeeeeeeseseseeeeeeeesaeeeeeaeeeeseeeeeseeeeeeaeeeeeeeeeeeeeseeeeee e e ee e e e e e s e e eeeeeaeeaee e et eeaeteeneereeeeereeeen 178
COSH () vereeeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeseseeeseeeeseseseeseeeeseeeeeseeseeeaeseesseseeseeseeesesaesaeeaeeeeseeeaeeeesaeseeseesaesaesaeseeseeseesaeeen 179
3G S 180
o0 RS 181
0 L SR 181
[0 1 0 R 182
RANDOM () +eteveeeeeeeeeeee e e e et e e eeee et seesesseeeeseseseeeseseseeesaseeseseeeeesee s easeae et eeeaeeeseesesesasseseeesseseseeeeeeeseeenees 183
ROUND (1) cevteeeeeeeeeeeeeeeeeeeeeee e eseseeeeeeeeeseseesesseeesseseseeeeeseseeesasessesseeeeseeseeaneaeeeseeeaseeseesesesasseseeenssaeseeeeeeeseeeneen 184
SIN (1) erveereee e e eeseeeeeseeeeeseeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeee et e eeeeeeee e et e e e et e eeeeeeee e et eee et e e et eeeeeeeeeeeeeeeereneeerens 185
SINH () eeeeeeeeeeeeseeseeseeeeeseeeeeeeeseeeeeseeseeseeeeeeeeseeeseeeeeeeeeeeeesseeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeseeerens 186
SQRT () seerteeeeeeeeeseeeeeseeseeseeseeeeeseeeeeseeeeeeeeseeeeeseeeseeeseeeeeeeeeseeeeeeeeeeeseeeennensens 187
TAN () eeeeeeeeeeeeee e e e e e e e e et e e e e e et e e e s s e e e e et eeeaeeeeeeee e e et eeeeee e et e et e e aee et eeeeee et aeee st eee et eeeaeeaee et aee et aeeeeeaneaees 188

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

TANH () ceeeeieteiieeet ettt et ettt e s b e e bt e e s bt e e s bt e e sh b e e s bt e e sh b e e bt e e sa b e e ehe e e sab e e e ateesabeeeabeesabeenareesabaenaree s 189
PART 11: OTHER MODES OF EXECUTIONuuuuiiiiiiiiiiiiiriiiniiiiiiiiiirarerssararnnannrarnnnrnrnensnsnsnsnsnnns 191
30. User-Defined FUNCHIONS......ccccvvveieiiiiiiiniinneeniiiiiiisinsseesiiissssssssssesssisssssssssesssssssssssssssssssssssssssssessssssssssnns 192

TYPES OF UDF S TN JAVA 1.ttt ettt ettt et et e sa b e e s at e e s bt e e ab e e sabeesabeesabeesaneesmreenaneens 192

WIEING UDF'S USING JAVA ..ttiiiiieiiiieiie ettt ettt st ettt et e st e e bt e s e s bt e st e e sabeesab e e e bt e sabeesaneenane 192

USING e UDF ...ttt ettt ettt e et e st e st esa bt e e bt e sabeeeabeesabeeeaseesabeeenbeesabeesnneess 196
3 I W T T B =0T o] N 198

CoMMENTS IN Pig SCIIPT. i e e e e et e e e e e e e e e e e e aaaeaes 198

Executing Pig Script in BAatCh MOEccc.uuiiiiiiee ettt e re e et e e e te e e e eatae e e s atr e e e entaeeennnaeas 198

Executing @ Pig SCript from HDFSooieiiie ettt e e e e tre e e et re e e e eaeaeeesntreeeestaeeennnneas 199

Vi

EIMPLYEAGSGYLEARMING

I@j \tutorialspoint

Apache Pig

Part 1: Introduction

I@j Mtutorialspoint

EIMPLYEAGSGYLEARMING

1. Apache Pig—Overview

What is Apache Pig?

Apache Pig is an abstraction over MapReduce. It is a tool/platform which is used to analyze
larger sets of data representing them as data flows. Pig is generally used with Hadoop;
we can perform all the data manipulation operations in Hadoop using Apache Pig.

To write data analysis programs, Pig provides a high-level language known as Pig Latin.
This language provides various operators using which programmers can develop their own
functions for reading, writing, and processing data.

To analyze data using Apache Pig, programmers need to write scripts using Pig Latin
language. All these scripts are internally converted to Map and Reduce tasks. Apache Pig
has a component known as Pig Engine that accepts the Pig Latin scripts as input and
converts those scripts into MapReduce jobs.

Why Do We Need Apache Pig?

Programmers who are not so good at Java normally used to struggle working with Hadoop,
especially while performing any MapReduce tasks. Apache Pig is a boon for all such
programmers.

Using Pig Latin, programmers can perform MapReduce tasks easily without having
to type complex codes in Java.

e Apache Pig uses multi-query approach, thereby reducing the length of codes.
For example, an operation that would require you to type 200 lines of code (LoC)
in Java can be easily done by typing as less as just 10 LoC in Apache Pig. Ultimately
Apache Pig reduces the development time by almost 16 times.

e Pig Latin is SQL-like language and it is easy to learn Apache Pig when you are
familiar with SQL.

e Apache Pig provides many built-in operators to support data operations like joins,

filters, ordering, etc. In addition, it also provides nested data types like tuples,
bags, and maps that are missing from MapReduce.

Features of Pig

Apache Pig comes with the following features:

¢ Rich set of operators: It provides many operators to perform operations like
join, sort, filer, etc.

o Ease of programming: Pig Latin is similar to SQL and it is easy to write a Pig
script if you are good at SQL.

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

e Optimization opportunities: The tasks in Apache Pig optimize their execution
automatically, so the programmers need to focus only on semantics of the
language.

o Extensibility: Using the existing operators, users can develop their own functions
to read, process, and write data.

e UDF’s: Pig provides the facility to create User-defined Functions in other
programming languages such as Java and invoke or embed them in Pig Scripts.

¢ Handles all kinds of data: Apache Pig analyzes all kinds of data, both structured

as well as unstructured. It stores the results in HDFS.

Apache Pig Vs MapReduce

Listed below are the major differences between Apache Pig and MapReduce.

Apache Pig

MapReduce

Apache Pig is a data flow language.

MapReduce is a data processing paradigm.

It is a high level language.

MapReduce is low level and rigid.

Performing a Join operation in Apache Pig
is pretty simple.

It is quite difficult in MapReduce to perform
a Join operation between datasets.

Any novice programmer with a basic
knowledge of SQL can work conveniently
with Apache Pig.

Exposure to Java is must to work with
MapReduce.

Apache Pig uses multi-query approach,
thereby reducing the length of the codes to
a great extent.

MapReduce will require almost 20 times
more the number of lines to perform the
same task.

There is no need for compilation. On
execution, every Apache Pig operator is
converted internally into a MapReduce job.

MapReduce jobs have a long compilation
process.

Apache Pig Vs SQL

Listed below are the major differences between Apache Pig and SQL.

Pig

SQL

Pig Latin is a procedural language.

SQL is a declarative language.

8> tutorialspoint

Apache Pig

In Apache Pig, schema is optional. We can
store data without designing a schema
(values are stored as $01, $02 etc.)

Schema is mandatory in SQL.

The data model in Apache Pig is nested
relational.

The data model used in SQL is flat
relational.

Apache Pig provides limited opportunity
for Query optimization.

There is more opportunity for query
optimization in SQL.

In addition to above differences, Apache Pig Latin;

o Allows splits in the pipeline.

¢ Allows developers to store data anywhere in the pipeline.

e Declares execution plans.

e Provides operators to perform ETL (Extract, Transform, and Load) functions.

Apache Pig Vs Hive

Both Apache Pig and Hive are used to create MapReduce jobs. And in some cases, Hive
operates on HDFS in a similar way Apache Pig does. In the following table, we have listed
a few significant points that set Apache Pig apart from Hive.

Apache Pig

Hive

Apache Pig uses a language called Pig
Latin. It was originally created at Yahoo.

Hive uses a language called HiveQL. It
was originally created at Facebook.

Pig Latin is a data flow language.

HiveQL is a query processing language.

Pig Latin is a procedural language and it fits
in pipeline paradigm.

HiveQL is a declarative language.

Apache Pig can handle structured,
unstructured, and semi-structured data.

Hive is mostly for structured data.

Applications of Apache Pig

Apache Pig is generally used by data scientists for performing tasks involving ad-hoc
processing and quick prototyping. Apache Pig is used;

e To process huge data sources such as web logs.

YEAEYLEARMIMNG

w ' tutorialspoint

Apache Pig

e To perform data processing for search platforms.

e To process time sensitive data loads.

Apache Pig — History

In 2006, Apache Pig was developed as a research project at Yahoo, especially to create
and execute MapReduce jobs on every dataset. In 2007, Apache Pig was open sourced
via Apache incubator. In 2008, the first release of Apache Pig came out. In 2010, Apache
Pig graduated as an Apache top-level project.

8> tutorialspoint

2. Apache Pig— Architecture

The language used to analyze data in Hadoop using Pig is known as Pig Latin. It is a high-
level data processing language which provides a rich set of data types and operators to
perform various operations on the data.

To perform a particular task Programmers using Pig, programmers need to write a Pig
script using the Pig Latin language, and execute them using any of the execution
mechanisms (Grunt Shell, UDFs, Embedded). After execution, these scripts will go through
a series of transformations applied by the Pig Framework, to produce the desired output.

Internally, Apache Pig converts these scripts into a series of MapReduce jobs, and thus, it
makes the programmer’s job easy. The architecture of Apache Pig is shown below.

Pig Latin
Scripts

Y
/ Apache Pm
Grunt Shell Pig Server

[Parser]

[Optimizer]
[

Compiler]

K [Execution Engine] /

A 4

MapReduce

Hadoop

Figure: Apache Pig Architecture

' tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Apache Pig— Components

As shown in the figure, there are various components in the Apache Pig framework. Let us
take a look at the major components.

Parser

Initially the Pig Scripts are handled by the Parser. It checks the syntax of the script, does
type checking, and other miscellaneous checks. The output of the parser will be a DAG
(directed acyclic graph), which represents the Pig Latin statements and logical operators.

In the DAG, the logical operators of the script are represented as the nodes and the data
flows are represented as edges.

Optimizer

The logical plan (DAG) is passed to the logical optimizer, which carries out the logical
optimizations such as projection and pushdown.

Compiler

The compiler compiles the optimized logical plan into a series of MapReduce jobs.

Execution engine

Finally the MapReduce jobs are submitted to Hadoop in a sorted order. Finally, these
MapReduce jobs are executed on Hadoop producing the desired results.

Pig Latin — Data Model

The data model of Pig Latin is fully nested and it allows complex non-atomic datatypes
such as map and tuple. Given below is the diagrammatical representation of Pig Latin’s

data model.
/ Tuple \
} :
001 | Rajiv | 21 | Hyderabad
Bag I 002 | Omer | 22 | Kolkata |
I 003 | Rajesh I 23 I Delhi |
o {Snnen o
\ Field /
Atom

Any single value in Pig Latin, irrespective of their data, type is known as an Atom. It is
stored as string and can be used as string and number. int, long, float, double, chararray,
and bytearray are the atomic values of Pig.

A piece of data or a simple atomic value is known as a field.

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example: ‘raja’ or ‘30’

Tuple

A record that is formed by an ordered set of fields is known as a tuple, the fields can be
of any type. A tuple is similar to a row in a table of RDBMS.

Example: (Raja, 30)

Bag

A bag is an unordered set of tuples. In other words, a collection of tuples (non-unique) is
known as a bag. Each tuple can have any number of fields (flexible schema). A bag is
represented by ‘{}’. It is similar to a table in RDBMS, but unlike a table in RDBMS, it is
not necessary that every tuple contain the same number of fields or that the fields in the
same position (column) have the same type.

Example: {(Raja, 30), (Mohammad, 45)}
A bag can be a field in a relation; in that context, it is known as inner bag.

Example: {Raja, 30, {9848022338, raja@gmail.com,}}

Relation

A relation is a bag of tuples. The relations in Pig Latin are unordered (there is no
guarantee that tuples are processed in any particular order).

Map

A map (or data map) is a set of key-value pairs. The key needs to be of type chararray
and should be unique. The value might be of any type. It is represented by ‘[]’

Example: [name#Raja, age#30]

8> tutorialspoint

mailto:raja@gmail.com,%7d

Apache Pig

Part 2: Environment

I@j Mtutorialspoint

EIMPLYEAGSGYLEARMING

3. Apache Pig— Installation

This chapter explains the how to download, install, and set up Apache Pig in your system.

Prerequisites

It is essential that you have Hadoop and Java installed on your system before you go for
Apache Pig. Therefore, prior to installing Apache Pig, install Hadoop and Java by following
the steps given in the following link:

http://www.tutorialspoint.com/hadoop/hadoop enviornment setup.htm

Download Apache Pig

First of all, download the Ilatest version of Apache Pig from the website
https://pig.apache.org/.

Step 1

Open the homepage of Apache Pig website. Under the section News, click on the link
release page as shown in the following snapshot.

=
/ N Welcome to Apache Pig! X '\
€« - C fi @ httpsy//pig.apache.org/index.html QEss: © =
3% Apps [C1 hadoop (] Other bookmarks

' Documentation -
Welcome to Apache Pig! A
o

Apache Pig 0.15.0 is released!

Getting Started
Getting Involved

Apache Pig is a platform for analyzing large data sets that consists of a high-level language for
expressing data analysis programs, coupled with infrastructure for evaluating these programs.
The salient property of Pig programs is that their structure is amenable to substantial
parallelization, which in turns enables them to handle very large data sets.

At the present time, Pig's infrastructure layer consists of a compiler that preduces sequences of
Map-Reduce programs, for which large-scale parallel implementations already exist (e.qg., the
Hadoop subproject). Pig's language layer currently consists of a textual language called Pig Latin,
which has the following key properties:

« Ease of programming. It is trivial to achieve parallel execution of simple,
“embarrassingly parallel” data analysis tasks. Complex tasks comprised of multiple
interrelated data transformations are explicitiy enceded as data flow sequences,
making them easy to write, understand, and maintain.

« Optimization opportunities. The way in which tasks are encoded permits the system
to optimize their execution automatically, allowing the user to focus on semantics
rather than efficiency.

« Extensibility. Users can create their own functions to do special-purpose processing.
News
Apache Pig 0.15.0 is released!

The highlights of this release includes Pig on Tez stablization, improved tez aute-parallelism and
invoking Hive UDFs from Pig. See details on the release page.

10

' tutorialspoint

EIMPLYEAGSGYLEARMING

http://www.tutorialspoint.com/hadoop/hadoop_enviornment_setup.htm
https://pig.apache.org/

Apache Pig

Step 2

On clicking the specified link, you will be redirected to the Apache Pig Releases page.
On this page, under the Download section, you will have two links, namely, Pig 0.8 and
later and Pig 0.7 and before. Click on the link Pig 0.8 and later, then you will be
redirected to the page having a set of mirrors.

-

N\ &pache Pig Relesses x

€« > C f © https://pig.apache.org/releases.html#Download Q =y @ = |
i1 Apps (3 hadoop (23 Other bookmarks

& Abuw Apache Pig Releases a ¢

Mailing Lists

Who We Are 20
Bylaws = Download

Pig Tools News

Privacy. Policy 6 June, 2015: release 0.15.0 available
' Decumentation . H

' Developers = 4 July, 2014: release 0.13.0 available
14 April. 2014: release 0.12.1 available

= :
1 April, 2013: release 0.11.1 available
21 February, 2013: release 0.11.0 available

6 January, 2013: release 0.10.] available

22 January, 2012: release 0.9.2 available
tober : release 0.9.1 availa
29 Julv, 2011: release 0.9.0 available
24 April, 2011: release 0.8.1 available
17 December, 2010: release 0.8.0 available
13 May. 2010: release 0.7.0 available
1 March, 2010: release 0.6.0 available
29 Octeber, 2009: release 0.5.0 available
r : rel 3 vailabl

8 April, 2009: release 0.2.0 available
S December, 2008: releass 0.1.1 available

Download

Releases may be downloaded from Apache mirrors.

| Download a release now! Pig 0.8 and later Pig 0.7 and before |
Get Pig .rpm or .deb

Starting with Pig 0.12, Pig will no longer publish .rpm or .deb artifacts as part of its release, .

Step 3
11

@ tutorialspoint

EIMPLYEAGSGYLEARMING

http://www.apache.org/dyn/closer.cgi/pig
http://www.apache.org/dyn/closer.cgi/pig
http://archive.apache.org/dist/hadoop/pig/
http://www.apache.org/dyn/closer.cgi/pig

Apache Pig

Choose and click any one of these mirrors as shown below.

7 ——

N\ Apache Download Mirre: %
€ > C A [wwwapache.org/dyn/closer.cgi/pig B Q=
3% Apps (7 hadoop (] Other bookmarks

a =

Software Foundation '

Community-led development since 1999.

| The Apache Way |

l Contribute !

l ASF Sponsors]
We suggest the following mirror site for your download:

| http:/jwww.us.apache.org/dist/pig |

Other mirror sites are suggested below. Please use the backup mirrors only to download PGP and MD5
signatures to verify your downloads or if no other mirrors are working.
www.apache.org/foundation/governance/

Step 4

These mirrors will take you to the Pig Releases page. This page contains various versions
of Apache Pig. Click the latest version among them.

IEEmREEY - p X
N\ Index of /dist/pig x
&« C A 3 www.us.apache.org/dist/pig/ El © =
=% Apps (O] hadoop

Pig Releases

] Other bookmarks

Please make sure you're downloading from a nearby muror site. not from wwiw.apache.org

Older releases are available from the archives.

Name Last modified Size scr n

S -
2215-08-19 €3:09
2015-08-19 ©3:09 -
2015-08-19 ©3:09 -

2215-08-19 ©3:09 - I

2014-10-30 ©9:34 9.7K

12

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Within these folders, you will have the source and binary files of Apache Pig in various
distributions. Download the tar files of the source and binary files of Apache Pig 0.15, pig-
0.15.0-src.tar.gz and pig-0.15.0.tar.gz.

jiutoriasipoits - 0 %
\, Index of /dist/pig/pig-0.1° X
&~ C A |) www.us.apache.org/dist/pig/pig-0.15.C Fl: © =
3 Apps (O] hadoop [T Other bookmarks

Index of /dist/pig/pig-0.15.0

Name Last modified Size Description
? Parent Directory
J pig-©.15.8-src.tar.gz 2015-06-05 17:31 1an |
E pig-9©.15.0-src.tar.gz.asc 2015-86-05 17:31 195

S0

ig-2.15.0.tar.g2 2015-06-05 17:31 1154
=] pig-2.15.08.tar. g2 .as¢ 2015-86-05 17:31 195
@ pig-2.15.0.tar gz .mdS 2015-06-05 17:31 52

Install Apache Pig

After downloading the Apache Pig software, install it in your Linux environment by
following the steps given below.

Step 1

Create a directory with the name Pig in the same directory where the installation
directories of Hadoop, Java, and other software were installed. (In our tutorial, we have
created the Pig directory in the user named Hadoop).

$ mkdir Pig

Step 2
Extract the downloaded tar files as shown below.

$ cd Downloads/
$ tar zxvf pig-0.15.0-src.tar.gz
$ tar zxvf pig-0.15.0.tar.gz

Step 3
13

I@j tutorialspoint

Apache Pig

Move the content of pig-0.15.0-src.tar.gz file to the Pig directory created earlier as
shown below.

$ mv pig-0.15.0-src.tar.gz/* /home/Hadoop/Pig/

Configure Apache Pig

After installing Apache Pig, we have to configure it. To configure, we need to edit two files:
bashrc and pig.properties.

.bashrc file

In the .bashrc file, set the following variables -
o PIG_HOME folder to the Apache Pig’s installation folder,
¢ PATH environment variable to the bin folder, and
e PIG_CLASSPATH environment variable to the etc (configuration) folder of your

Hadoop installations (the directory that contains the core-site.xml, hdfs-site.xml and
mapred-site.xml files).

export PIG_HOME = /home/Hadoop/Pig
export PATH = PATH:/home/Hadoop/pig/bin
export PIG_CLASSPATH = $HADOOP_HOME/conf

pig.properties file

In the conf folder of Pig, we have a file named pig.properties. In the pig.properties file,
you can set various parameters as given below.

pig -h properties

The following properties are supported:

Logging:

verbose=true|false; default is false. This property is the same as -v
switch

brief=true|false; default is false. This property is the same as -b
switch

debug=0FF | ERROR |[WARN | INFO|DEBUG; default is INFO. This property is the
same as -d switch

aggregate.warning=true|false; default is true. If true, prints count of
warnings of each type rather than logging each warning.

Performance tuning:
pig.cachedbag.memusage=<mem fraction>; default is 0.2 (20% of all memory).
Note that this memory is shared across all large bags used by the application.
pig.skewedjoin.reduce.memusagea=<mem fraction>; default is 0.3 (30% of
all memory).
Specifies the fraction of heap available for the reducer to perform the join.

14

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

pig.exec.nocombiner=true|false; default is false.

Only disable combiner as a temporary workaround for problems.
opt.multiquery=true|false; multiquery is on by default.

Only disable multiquery as a temporary workaround for problems.
opt.fetch=true|false; fetch is on by default.

Scripts containing Filter, Foreach, Limit, Stream, and Union can be

dumped without MR jobs.

pig.tmpfilecompression=true|false; compression is off by default.

Determines whether output of intermediate jobs is compressed.
pig.tmpfilecompression.codec=1zo|gzip; default is gzip.

Used in conjunction with pig.tmpfilecompression. Defines

compression type.

pig.noSplitCombination=true|false. Split combination is on by default.

Determines if multiple small files are combined into a single map.
pig.exec.mapPartAgg=true|false. Default is false.

Determines if partial aggregation is done within map phase,

before records are sent to combiner.
pig.exec.mapPartAgg.minReduction=<min aggregation factor>. Default is 10.

If the in-map partial aggregation does not reduce the output num records

by this factor, it gets disabled.

Miscellaneous:

exectype=mapreduce|tez|local; default is mapreduce. This property is
the same as -x switch

pig.additional.jars.uris=<comma seperated list of jars>. Used in place
of register command.

udf.import.list=<comma seperated list of imports>. Used to avoid
package names in UDF.

stop.on.failure=true|false; default is false. Set to true to terminate
on the first error.

pig.datetime.default.tz=<UTC time offset>. e.g. +08:00. Default is the
default timezone of the host.

Determines the timezone used to handle datetime datatype and UDFs.

Additionally, any Hadoop property can be specified.

Verifying the Installation

Verify the installation of Apache Pig by typing the version command. If the installation is
successful, you will get the version of Apache Pig as shown below.

$ pig -version

Apache Pig version 0.15.0 (rl682971)
compiled Jun 01 2015, 11:44:35

15

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://pig.datetime.default.tz/

4. Apache Pig— Execution

In the previous chapter, we explained how to install Apache Pig. In this chapter, we will
discuss how to execute Apache Pig.

Apache Pig — Execution Modes

You can run Apache Pig in two modes, namely, Local Mode and HDFS mode.

Local Mode

In this mode, all the files are installed and run from your local host and local file system.
There is no need of Hadoop or HDFS. This mode is generally used for testing purpose.

MapReduce Mode

MapReduce mode is where we load or process the data that exists in the Hadoop File
System (HDFS) using Apache Pig. In this mode, whenever we execute the Pig Latin
statements to process the data, a MapReduce job is invoked in the back-end to perform a
particular operation on the data that exists in the HDFS.

Apache Pig — Execution Mechanisms

Apache Pig scripts can be executed in three ways, namely, interactive mode, batch mode,
and embedded mode.

e Interactive Mode (Grunt shell) — You can run Apache Pig in interactive mode
using the Grunt shell. In this shell, you can enter the Pig Latin statements and get
the output (using Dump operator).

e Batch Mode (Script) - You can run Apache Pig in Batch mode by writing the Pig
Latin script in a single file with .pig extension.

¢ Embedded Mode (UDF) - Apache Pig provides the provision of defining our own
functions (User Defined Functions) in programming languages such as Java, and
using them in our script.

Invoking the Grunt Shell

You can invoke the Grunt shell in a desired mode (local/MapReduce) using the -x option
as shown below.

Local mode MapReduce mode
Command: Command:
$./pig -x local $./pig -x mapreduce

16

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Output: Output:
15/09/28 10:13:03 INFO pig.Main:
Logging error messages to:
/home/Hadoop/pig 1443415383991.1og
2015-09-28 10:13:04,838 [main]

INFO
org.apache.pig.backend.hadoop.execution
engine.HExecutionEngine - Connecting to
hadoop file system at: file:///

15/09/28 10:28:46 INFO pig.Main:
Logging error messages to:
/home/Hadoop/pig_1443416326123.10g
2015-09-28 10:28:46,427 [main] INFO
org.apache.pig.backend.hadoop.execution
engine.HExecutionEngine - Connecting to
hadoop file system at: file:///

grunt> grunt>

Either of these commands gives you the Grunt shell prompt as shown below.

grunt>

You can exit the Grunt shell using *ctrl + d’.

After invoking the Grunt shell, you can execute a Pig script by directly entering the Pig
Latin statements in it.

grunt> customers = LOAD 'customers.txt' USING PigStorage(',"');

Executing Apache Pig in Batch Mode

You can write an entire Pig Latin script in a file and execute it using the =x command.
Let us suppose we have a Pig script in a file named sample_script.pig as shown below.

Sample_script.pig

student = LOAD 'hdfs://localhost:9000/pig data/student.txt' USING
PigStorage(',') as (id:int,name:chararray,city:chararray);

Dump student;

Now, you can execute the script in the above file as shown below.

Local mode MapReduce mode

$ pig -x local Sample_script.pig $ pig -x mapreduce Sample_script.pig

Note: We will discuss in detail how to run a Pig script in Bach mode and in embedded
mode in subsequent chapters.

17

EIMPLYEAGSGYLEARMING

w \tutorialspoint

5. Grunt Shell

After invoking the Grunt shell, you can run your Pig scripts in the shell. In addition to that,
there are certain useful shell and utility commands provided by the Grunt shell. This
chapter explains the shell and utility commands provided by the Grunt shell.

Note: In some portions of this chapter, the commands like Load and Store are used.
Refer the respective chapters to get in-detail information on them.

Shell Commands

The Grunt shell of Apache Pig is mainly used to write Pig Latin scripts. Prior to that, we
can invoke any shell commands using sh and fs.

sh Command

Using sh command, we can invoke any shell commands from the Grunt shell. Using sh
command from the Grunt shell, we cannot execute the commands that are a part of the
shell environment (ex: cd).

Syntax

Given below is the syntax of sh command.

grunt> sh shell command parameters

Example

We can invoke the Is command of Linux shell from the Grunt shell using the sh option as
shown below. In this example, it lists out the files in the /pig/bin/ directory.

grunt> sh 1s

pig
pig_1444799121955.1og
pig.cmd

pig.py

18

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig
fs Command

Using the fs command, we can invoke any FsShell commands from the Grunt shell.

Syntax

Given below is the syntax of fs command.

grunt> sh File System command parameters

Example

We can invoke the Is command of HDFS from the Grunt shell using fs command.
In the following example, it lists the files in the HDFS root directory.

grunt> fs -1s

Found 3 items

drwxrwxrwx - Hadoop supergroup @ 2015-09-08 14:13 Hbase
drwxr-xr-x - Hadoop supergroup 0 2015-09-09 14:52 seqgen_data
drwxr-xr-x - Hadoop supergroup 0 2015-09-08 11:30 twitter_data

In the same way, we can invoke all the other file system shell commands from the Grunt
shell using the fs command.

Utility Commands

The Grunt shell provides a set of utility commands. These include utility commands such
as clear, help, history, quit, and set; and commands such as exec, kill, and run to
control Pig from the Grunt shell. Given below is the description of the utility commands
provided by the Grunt shell.

clear Command

The clear command is used to clear the screen of the Grunt shell.

Syntax

You can clear the screen of the grunt shell using the clear command as shown below.

grunt> clear

help Command

The help command gives you a list of Pig commands or Pig properties.

Usage

You can get a list of Pig commands using the help command as shown below.

grunt> help

19

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://pig.apache.org/docs/r0.14.0/cmds.html#fs
http://pig.apache.org/docs/r0.14.0/cmds.html#utillity-cmds
http://pig.apache.org/docs/r0.14.0/cmds.html#clear
http://pig.apache.org/docs/r0.14.0/cmds.html#help

Apache Pig

Commands:
<pig latin statement>; - See the PiglLatin manual for
details: http://hadoop.apache.org/pig

File system commands:
fs <fs arguments> - Equivalent to Hadoop dfs command:

http://hadoop.apache.org/common/docs/current/hdfs_shell.html

Diagnostic Commands:
describe <alias>[::<alias] - Show the schema for the alias. Inner aliases
can be described as A::B.
explain [-script <pigscript>] [-out <path>] [-brief] [-dot|-xml] [-param
<param_name>=<pCram_value>]
[-param_file <file_name>] [<alias>] - Show the execution plan to
compute the alias or for entire script.
-script - Explain the entire script.
-out - Store the output into directory rather than print to stdout.
-brief - Don't expand nested plans (presenting a smaller graph for
overview).
-dot - Generate the output in .dot format. Default is text format.
-xml - Generate the output in .xml format. Default is text format.
-param <param_name - See parameter substitution for details.
-param_file <file_name> - See parameter substitution for details.
alias - Alias to explain.
dump <alias> - Compute the alias and writes the results to stdout.

Utility Commands:
exec [-param <param_name>=param_value] [-param_file <file_name>] <script>

Execute the script with access to grunt environment including aliases.
-param <param_name - See parameter substitution for details.
-param_file <file_name> - See parameter substitution for details.
script - Script to be executed.
run [-param <param_name>=param_value] [-param_file <file_name>] <script> -
Execute the script with access to grunt environment.
-param <param_name - See parameter substitution for details.
-param_file <file_name> - See parameter substitution for details.
script - Script to be executed.
sh <shell command> - Invoke a shell command.
kill <job_id> - Kill the hadoop job specified by the hadoop job id.
set <key> <value> - Provide execution parameters to Pig. Keys and values
are case sensitive.
The following keys are supported:
default_parallel - Script-level reduce parallelism. Basic input size
heuristics used by default.
debug - Set debug on or off. Default is off.
job.name - Single-quoted name for jobs. Default is Piglatin:<script name>
job.priority - Priority for jobs. Values: very_low, low, normal, high,
very_high. Default is normal
stream.skippath - String that contains the path. This is used by streaming
any hadoop property.

EIMPLYEAGSGYLEARMING

w \tutorialspoint

20

http://hadoop.apache.org/pig
http://hadoop.apache.org/common/docs/current/hdfs_shell.html
http://job.name/

Apache Pig

help - Display this message.

history [-n] - Display the list statements in cache.
-n Hide line numbers.

quit - Quit the grunt shell.

history Command
This command displays a list of statements executed / used so far since the Grunt sell is

invoked.

Usage

Assume we have executed two statements since opening the Grunt shell.

customers = LOAD 'hdfs://localhost:9000/pig _data/customers.txt’' USING
PigStorage(',');

orders = LOAD 'hdfs://localhost:9000/pig data/orders.txt' USING
PigStorage(',"');

student = LOAD 'hdfs://localhost:9000/pig data/student.txt' USING
PigStorage(',"');

Then, using the history command will produce the following output.

grunt> history

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING
PigStorage(',"');

orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING
PigStorage(',"');

student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING
PigStorage(',"');

set Command

The set command is used to show/assign values to keys used in Pig.

21

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://pig.apache.org/docs/r0.14.0/cmds.html#history

Apache Pig

Usage

Using this command, you can set values to the following keys.

Key Description and values

default_parallel You can set the number of reducers for a map job by passing any whole
number as a value to this key.

You can turn off or turn on the debugging freature in Pig by passing

debug on/off to this key.

job.name You can set the Job name to the required job by passing a string value
to this key.

You can set the job priority to a job by passing one of the following
values to this key:
job.priority very_low
low
normal
high
very_high

For streaming, you can set the path from where the data is not to be
transferred, by passing the desired path in the form of a string to this
key.

stream.skippath

quit Command

You can quit from the Grunt shell using this command.

Usage

Quit from the Grunt shell as shown below.

grunt> quit

Let us now take a look at the commands using which you can control Apache Pig from the
Grunt shell.

exec Command

Using the exec command, we can execute Pig scripts from the Grunt shell.

Syntax

Given below is the syntax of the utility command exec.

22

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://pig.apache.org/docs/r0.14.0/cmds.html#quit
http://pig.apache.org/docs/r0.14.0/cmds.html#exec

Apache Pig

grunt> exec [-param param_name = param_value] [-param_file file_name] [script]

Example

Let us assume there is a file named student.txt in the /pig_data/ directory of HDFS
with the following content.

Student.txt

001,Rajiv,Hyderabad
002,siddarth,Kolkata
003,Rajesh,Delhi

And, assume we have a script file named sample_script.pig in the /pig_data/ directory
of HDFS with the following content.

Sample_script.pig

student = LOAD 'hdfs://localhost:9000/pig data/student.txt’' USING PigStorage(',
') as (id:int,name:chararray,city:chararray);

Dump student;

Now, let us execute the above script from the Grunt shell using the exec command as
shown below.

grunt> exec /sample_script.pig

Output

The exec command executes the script in the sample_script.pig. As directed in the
script, it loads the student.txt file into Pig and gives you the result of the Dump operator
displaying the following content.

(1,Rajiv,Hyderabad)
(2,siddarth,Kolkata)
(3,Rajesh,Delhi)

kil Command

You can kill a job from the Grunt shell using this command.

Syntax

Given below is the syntax of the kill command.

grunt> kill JobId

Example

Suppose there is a running Pig job having id Id_0055, you can kill it from the Grunt shell
using the kill command, as shown below.

23

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://pig.apache.org/docs/r0.14.0/cmds.html#kill

Apache Pig

grunt> kill Id_0055

run Command

You can run a Pig script from the Grunt shell using the run command.

Syntax

Given below is the syntax of the run command.

grunt> run [-param param_name = param_value] [-param_file file_name] script

Example

Let us assume there is a file named student.txt in the /pig_data/ directory of HDFS
with the following content.

Student.txt

001,Rajiv,Hyderabad
002,siddarth,Kolkata
003,Rajesh,Delhi

And, assume we have a script file named sample_script.pig in the local filesystem with
the following content.

Sample_script.pig

student = LOAD 'hdfs://localhost:9000/pig data/student.txt' USING
PigStorage(',') as (id:int,name:chararray,city:chararray);

Now, let us run the above script from the Grunt shell using the run command as shown
below.

grunt> run /sample_script.pig

You can see the output of the script using the Dump operator as shown below.

grunt> Dump;

(1,Rajiv,Hyderabad)
(2,siddarth,Kolkata)
(3,Rajesh,Delhi)

Note: The difference between exec and the run command is that if we use run, the
statements from the script are available in the command history.

24

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://pig.apache.org/docs/r0.14.0/cmds.html#run

&

Part 3: Pig Latin

tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

25

6. Pig Latin—Basics

Pig Latin is the language used to analyze data in Hadoop using Apache Pig. In this chapter,
we are going to discuss the basics of Pig Latin such as Pig Latin statements, data types,
general and relational operators, and Pig Latin UDF's.

Pig Latin — Data Model

As discussed in the previous chapters, the data model of Pig is fully nested. A Relation is
the outermost structure of the Pig Latin data model. And it is a bag where -

e A bag is a collection of tuples.
e A tupleis an ordered set of fields.

e A field is a piece of data.

Pig Latin — Statemets

While processing data using Pig Latin, statements are the basic constructs.

e These statements work with relations. They include expressions and schemas.
e Every statement ends with a semicolon (;).

e We will perform various operations using operators provided by Pig Latin, through
statements.

e Except LOAD and STORE, while performing all other operations, Pig Latin
statements take a relation as input and produce another relation as output.

e As soon as you enter a Load statement in the Grunt shell, its semantic checking
will be carried out. To see the contents of the schema, you need to use the Dump
operator. Only after performing the dump operation, the MapReduce job for
loading the data into the file system will be carried out.

Example

Given below is a Pig Latin statement, which loads data to Apache Pig.

Student_data = LOAD 'student_data.txt' USING PigStorage(',')as (id:int,
firstname:chararray, lastname:chararray, phone:chararray, city:chararray);

26

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Pig Latin — Data types

Apache Pig

Given below table describes the Pig Latin data types.

Data Type Description and Example
. Represents a signed 32-bit integer.
int
Example: 8
Represents a signed 64-bit integer.
long Example: 5L
Represents a signed 32-bit floating point.
float Example: 5.5F
Represents a 64-bit floating point.
double Example: 10.5
Represents a character array (string) in Unicode UTF-8 format.
chararray Example: ‘tutorials point’
Bytearray | Represents a Byte array (blob).
Represents a Boolean value.
Boolean)
Example: true/ false.
Datetime Represents a date-time.
Example:1970-01-01T00:00:00.000+00:00
- Represents a Java Biglnteger.
Biginteger | £ ample: 60708090709
Biadecimal Represents a Java BigDecimal
9 Example: 185.98376256272893883
Complex Types
Tuble A tuple is an ordered set of fields.
P Example: (raja, 30)
Ba A bag is a collection of tuples.
g Example: {(raju,30),(Mohhammad,45)}
Ma A Map is a set of key-value pairs.
P Example:[‘name’#'Raju’, ‘age’#30]
Null Values

Values for all the above data types can be NULL. Apache Pig treats null values in a similar
way as SQL does.

A null can be an unknown value or a non-existent value. It is used as a placeholder for
optional values. These nulls can occur naturally or can be the result of an operation.

8> tutorialspoint

27

Apache Pig

Pig Latin — Arithmetic Operators
The following table describes the arithmetic operators of Pig Latin. Suppose a=10 and
b=20.
Operator Description Example
+ Addition - Adds values on either side of a + b will give 30
the operator
) Subtraction - Subtracts right hand a - b will give -10
operand from left hand operand 9
Multiplication - Multiplies values on -
*x X
either side of the operator a * b will give 200
Division - Divides left hand operand by I
/ right hand operand b/ a will give 2
Modulus - Divides left hand operand by
% right hand operand and returns b % a will give O
remainder
Bincond - Evaluates the Boolean b = (a == 1)? 20: 30;
operators. It has three operands as shown
below. . .
5. if a=1 the value of b is 20.
variable x = (expression) ? valuel if _ _
true : value2 if false. if al=1 the value of b is 30.
ASE CASE f2 % 2
V?/HISEN Case - The case operator is equivalent WHEN 0 THEN 'even'
THEN to nested bincond operator. WHEN 1 THEN 'odd'
ELSE END END
Pig Latin — Comparison Operators

The following table describes the comparison operators of Pig Latin.

Operator

Description

Example

Equal - Checks if the values of two operands
are equal or not; if yes, then the condition

becomes true.

(a = b) is not true.

Not Equal - Checks if the values of two
operands are equal or not. If the values are not

equal, then condition becomes true.

(a !'= b) is true.

tutorialspoint

PFPLYEAEYLEARMNING

28

Apache Pig

Greater than - Checks if the value of the left
operand is greater than the value of the right
operand. If yes, then the condition becomes
true.

(a > b) is not true.

Less than - Checks if the value of the left
operand is less than the value of the right
operand. If yes, then the condition becomes
true.

(a < b) is true.

Greater than or equal to - Checks if the
value of the left operand is greater than or
equal to the value of the right operand. If yes,
then the condition becomes true.

(a >= b) is not true.

Less than or equal to - Checks if the value
of the left operand is less than or equal to the
value of the right operand. If yes, then the
condition becomes true.

(a <= b) is true.

matches

Pattern matching - Checks whether the
string in the left-hand side matches with the
constant in the right-hand side.

f1 matches '.*tutorial.*'

Pig Latin —

Type Construction Operators

The following table describes the Type construction operators of Pig Latin.

Operator

Description

Example

0

Tuple constructor operator - This operator is
used to construct a tuple.

(Raju, 30)

{3

Bag constructor operator - This operator is
used to construct a bag.

{(Raju, 30),
(Mohammad, 45)}

(]

Map constructor operator — This operator is
used to construct a tuple.

[name#Raja, age#30]

Pig Latin —

Relational Operations

The following table describes the relational operators of Pig Latin.

Operator

Description

MPLYEAEYLEARMING

@j . tutorialspoint

29

Apache Pig

Loading and Storing

LOAD To Load the data from the file system (local/HDFS) into a relation.
STORE To save a relation to the file system (local/HDFS).
Filtering
FILTER To remove unwanted rows from a relation.
DISTINCT | To remove duplicate rows from a relation.
FOREACH... | To generate data transformations based on columns of data.
GENERATE:
STREAM To transform a relation using an external program.
Grouping and Joining
JOIN To join two or more relations.
COGROUP To group the data in two or more relations.
GROUP To group the data in a single relation.
CROSS To create the cross product of two or more relations.
Sorting
To arrange a relation in a sorted order based on one or more fields
ORDER (ascending or descending).
LIMIT To get a limited number of tuples from a relation.

Combining and Splitting

MPLYEAEGEYLEARNINLG

w ' tutorialspoint

30

Apache Pig

UNION To combine two or more relations into a single relation.
SPLIT To split a single relation into two or more relations.
Diagnostic Operators
bumMp To print the contents of a relation on the console.
DESCRIBE | To describe the schema of a relation.
EXPLAIN To view the logical, physical, or MapReduce execution plans to compute a
relation.
ILLUSTRATE | To view the step-by-step execution of a series of statements.

MPLYEAEGEYLEARNINLG

w ' tutorialspoint

31

http://pig.apache.org/docs/r0.15.0/test.html#describe
http://pig.apache.org/docs/r0.15.0/test.html#explain
http://pig.apache.org/docs/r0.15.0/test.html#illustrate

Apache Pig

Part 4: Load and Store Operators

32

IIIIIIIIIIIIIIIIII

7. Apache Pig - Reading Data

In general, Apache Pig works on top of Hadoop. It is an analytical tool that analyzes large
datasets that exist in the Hadoop File System. To analyze data using Apache Pig, we have
to initially load the data into Apache Pig. This chapter explains how to load data to Apache
Pig from HDFS.

Preparing HDFS

In MapReduce mode, Pig reads (loads) data from HDFS and stores the results back in
HDFS. Therefore, let us start HDFS and create the following sample data in HDFS.

Student ID First Name Last Name Phone City
001 Rajiv Reddy 9848022337 Hyderabad
002 siddarth Battacharya 9848022338 Kolkata
003 Rajesh Khanna 9848022339 Delhi
004 Preethi Agarwal 9848022330 Pune
005 Trupthi Mohanthy 9848022336 Bhuwaneshwar
006 Archana Mishra 9848022335 Chennai

The above dataset contains personal details like id, first name, last name, phone number
and city, of six students.

Step 1: Verifying Hadoop

First of all, verify the installation using Hadoop version command, as shown below.

$ hadoop version

If your system contains Hadoop, and if you have set the PATH variable, then you will get
the following output:

Hadoop 2.6.0

Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r
€3496499ecb8d220fba99dc5ed4c99¢c8f9e33bbl

Compiled by jenkins on 2014-11-13T21:10Z

Compiled with protoc 2.5.90

From source with checksum 18e43357c8f927c0695f1e9522859d6a

This command was run using /home/Hadoop/hadoop/share/hadoop/common/hadoop-

common-2.6.0.jar

33

@ tutorialspoint

EIMPLYEAGSGYLEARMING

https://git-wip-us.apache.org/repos/asf/hadoop.git

Apache Pig

Step 2: Starting HDFS

Browse through the sbin directory of Hadoop and start yarn and Hadoop dfs (distributed
file system) as shown below.

cd /$Hadoop_Home/sbin/
$ start-dfs.sh

localhost: starting namenode, logging to /home/Hadoop/hadoop/logs/hadoop-
Hadoop-namenode-localhost.localdomain.out

localhost: starting datanode, logging to /home/Hadoop/hadoop/logs/hadoop-
Hadoop-datanode-localhost.localdomain.out

Starting secondary namenodes [0.0.0.0]

starting secondarynamenode, logging to /home/Hadoop/hadoop/logs/hadoop-Hadoop-
secondarynamenode-localhost.localdomain.out

$ start-yarn.sh
starting yarn daemons

starting resourcemanager, logging to /home/Hadoop/hadoop/logs/yarn-Hadoop-
resourcemanager-localhost.localdomain.out

localhost: starting nodemanager, logging to /home/Hadoop/hadoop/logs/yarn-
Hadoop-nodemanager-localhost.localdomain.out

Step 3: Create a Directory in HDFS

In Hadoop DFS, you can create directories using the command mkdir. Create a new
directory in HDFS with the name Pig_Data in the required path as shown below.

$cd /$Hadoop_Home/bin/
$ hdfs dfs -mkdir hdfs://localhost:9000/Pig_Data

Step 4: Placing the data in HDFS

The input file of Pig contains each tuple/record in individual lines. And the entities of the
record are separated by a delimiter (In our example we used %,").

In the local file system, create an input file student_data.txt containing data as shown
below.

001,Rajiv,Reddy,98486022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

34

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Now, move the file from the local file system to HDFS using put command as shown below.
(You can use copyFromLocal command as well.)

$ cd $HADOOP_HOME/bin

$ hdfs dfs -put /home/Hadoop/Pig/Pig Data/student_data.txt
dfs://localhost:9000/pig_data/

Verifying the file

You can use the cat command to verify whether the file has been moved into the HDFS,
as shown below.

$ cd $HADOOP_HOME/bin
$ hdfs dfs -cat hdfs://localhost:9000/pig data/student_data.txt

Output

You can see the content of the file as shown below.

15/10/01 12:16:55 WARN util.NativeCodelLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable

001,Rajiv,Reddy,98486022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai

The Load Operator

You can load data into Apache Pig from the file system (HDFS/ Local) using LOAD operator
of Pig Latin.

Syntax

The load statement consists of two parts divided by the “=" operator. On the left-hand
side, we need to mention the name of the relation where we want to store the data, and
on the right-hand side, we have to define how we store the data. Given below is the
syntax of the Load operator.

Relation_name = LOAD 'Input file path' USING function as schema;

Where,

¢ relation_name - We have to mention the relation in which we want to store the
data.

e Input file path - We have to mention the HDFS directory where the file is stored.
(In MapReduce mode)

35

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

e function - We have to choose a function from the set of load functions provided
by Apache Pig (BinStorage, JsonLoader, PigStorage, TextLoader). Or, we can
define our own load function.

e Schema - We have to define the schema of the data. We can define the required
schema as follows:

(columnl : data type, column2 : data type, column3 : data type);

Note: We load the data without specifying the schema. In that case, the columns will be
addressed as $01, $02, etc... (check).

Example

As an example, let us load the data in student_data.txt in Pig under the schema named
Student using the LOAD command.

Start the Pig Grunt Shell

First of all, open the Linux terminal. Start the Pig Grunt shell in MapReduce mode as shown
below.

$ Pig -x mapreduce

It will start the Pig Grunt shell as shown below.

15/10/01 12:33:37 INFO pig.ExecTypeProvider: Trying ExecType : LOCAL
15/10/01 12:33:37 INFO pig.ExecTypeProvider: Trying ExecType : MAPREDUCE
15/10/01 12:33:37 INFO pig.ExecTypeProvider: Picked MAPREDUCE as the ExecType

2015-10-01 12:33:38,080 [main] INFO org.apache.pig.Main - Apache Pig version
0.15.0 (r1682971) compiled Jun 01 2015, 11:44:35

2015-10-01 12:33:38,080 [main] INFO org.apache.pig.Main - Logging error
messages to: /home/Hadoop/pig_1443683018078.1log

2015-10-01 12:33:38,242 [main] INFO org.apache.pig.impl.util.Utils - Default
bootup file /home/Hadoop/.pigbootup not found

2015-10-01 12:33:39,630 [main]
INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine -

Connecting to hadoop file system at: hdfs://localhost:9000

grunt>

Execute the Load Statement

Now load the data from the file student_data.txt into Pig by executing the following Pig
Latin statement in the Grunt shell.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(', ')as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

36

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Following is the description of the above statement.

Apache Pig

Relation name

We have stored the data in the schema student.

Input file path

We are reading data from the file student_data.txt, which is in
the /pig_data/ directory of HDFS.

Storage function

parameter.

We have used the PigStorage() function. It loads and stores data
as structured text files. It takes a delimiter using which each entity of
a tuple is separated, as a parameter. By default, it takes '\t" as a

schema

We have stored the data using the following schema.

column

id

firstname

lastname

phone

city

datatype

int

char array

char array

char array

char array

Note: The load statement will simply load the data into the specified relation in Pig. To
verify the execution of the Load statement, you have to use the Diagnostic Operators
which are discussed in the next chapters.

YEAEYLEARHMI

w ' tutorialspoint

MG

37

http://pig.apache.org/docs/r0.15.0/test.html#diagnostic-ops

8. Storing Data

In the previous chapter, we learnt how to load data into Apache Pig. You can store the
loaded data in the file system using the store operator. This chapter explains how to store
data in Apache Pig using the Store operator.

Syntax

Given below is the syntax of the Store statement.

STORE Relation_name INTO ' required_directory_path ' [USING function];

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,98486022337,Hyderabad
002,siddarth,Battacharya, 9848022338,Kolkata
003,Rajesh,kKhanna,9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy, 9848022336, Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Now, let us store the relation in the HDFS directory “hdfs://localhost:9000/pig_Output/” as
shown below.

grunt> STORE student INTO ' hdfs://localhost:9000/pig Output/ ' USING
PigStorage (',"');

Output

After executing the store statement, you will get the following output. A directory is
created with the specified nhame and the data will be stored in it.

2015-10-05 13:05:05,429 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MapReducelau
ncher - 100% complete

2015-10-05 13:05:05,429 [main]

INFO org.apache.pig.tools.pigstats.mapreduce.SimplePigStats - Script
Statistics:

HadoopVersion PigVersion UserId StartedAt FinishedAt Features
2.6.0 0.15.0 Hadoop 2015-10-05 13:03:03 2015-10-05

38

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

13:05:05 UNKNOWN
Success!

Job Stats (time in seconds):

JobId Maps Reduces MaxMapTime MinMapTime AvgMapTime MedianMap
Time MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime
Alias Feature Outputs

job_1443519499159_0006 1 0 n/a n/a n/a n/a 0 0 0

(%] student MAP_ONLY hdfs://localhost:9000/pig Output,

Input(s):
Successfully read © records from:
"hdfs://localhost:9000/pig data/student_data.txt"

Output(s):
Successfully stored © records in: "hdfs://localhost:9000/pig Output"

Counters:

Total records written : ©

Total bytes written : ©

Spillable Memory Manager spill count : ©
Total bags proactively spilled: ©

Total records proactively spilled: ©

Job DAG:
job_1443519499159_0006

2015-10-05 13:06:06,192 [main]
INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MapReducelau
ncher - Success!

Verification

You can verify the stored data as shown below.

Step 1

First of all, list out the files in the directory named pig_output using the Is command as
shown below.

hdfs dfs -1s 'hdfs://localhost:9000/pig Output/'
Found 2 items

rw-r--r- 1 Hadoop supergroup 0 2015-10-05 13:03
hdfs://localhost:9000/pig Output/_SUCCESS
rw-r--r- 1 Hadoop supergroup 224 2015-10-05 13:03

hdfs://localhost:9000/pig Output/part-m-00000

You can observe that two files were created after executing the store statement.

39

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Step 2

Apache Pig

Using cat command, list the contents of the file named part-m-00000 as shown below.

$ hdfs dfs -cat 'hdfs://localhost:9000/pig_Output/part-m-00000'

1,Rajiv,Reddy,9848022337,Hyderabad
2,siddarth,Battacharya,9848022338,Kolkata
3,Rajesh,Khanna, 9848022339,Delhi
4,Preethi,Agarwal, 9848022330, Pune
5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
6,Archana,Mishra, 9848022335, Chennai

EIMPLYEAGSGYLEARMING

M \tutorialspoint

40

Part 5: Diagnostic Operators

IIIIIIIIIIIIIIIIII

Apache Pig

41

O. Diagnostic Operators

The load statement will simply load the data into the specified relation in Apache Pig. To
verify the execution of the Load statement, you have to use the Diagnostic Operators.
Pig Latin provides four different types of diagnostic operators:

e Dump operator
e Describe operator
e Explanation operator

e Illustration operator

In this chapter, we will discuss the diagnostic operators of Pig Latin.

Dump Operator

The Dump operator is used to run the Pig Latin statements and display the results on the
screen. It is generally used for debugging Purpose.

Syntax

Given below is the syntax of the Dump operator.

grunt> Dump Relation_Name

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy, 9848022337 ,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy, 9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Now, let us print the contents of the relation using the Dump operator as shown below.

grunt> Dump student

Output
42

@ tutorialspoint

EIMPLYEAGSGYLEARMING

http://pig.apache.org/docs/r0.15.0/test.html#diagnostic-ops
http://pig.apache.org/docs/r0.15.0/test.html#diagnostic-ops

Apache Pig

Once you execute the above Pig Latin statement, it will start a MapReduce job to read
data from HDFS. It will produce the following output.

2015-10-01 15:05:27,642 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MapReducelau
ncher - 100% complete

2015-10-01 15:05:27,652 [main]

INFO org.apache.pig.tools.pigstats.mapreduce.SimplePigStats - Script
Statistics:

HadoopVersion PigVersion Userld StartedAt
FinishedAt Features

2.6.0 0.15.0 Hadoop 2015-10-01
15:03:11 2015-10-01 05:27 UNKNOWN

Success!

Job Stats (time in seconds):

JobId

Maps
Reduces
MaxMapTime
MinMapTime
AvgMapTime

MedianMapTime

job_14459_o004
1

0

n/a

n/a

n/a

n/a

MaxReduceTime

MinReduceTime
AvgReduceTime
MedianReducetime

Alias

43

MPLYEAEYLEARMING

I@j Mtutorialspoint

Apache Pig

0
%
0
0
student

Feature

Outputs

MAP_ONLY
hdfs://localhost:9000/tmp/temp580182027/tmp757878456,

Input(s):
Successfully read © records from:
"hdfs://localhost:9000/pig data/student_data.txt"

Output(s):
Successfully stored © records in:
"hdfs://localhost:9000/tmp/temp580182027/tmp757878456"

Counters:

Total records written : ©

Total bytes written : ©

Spillable Memory Manager spill count : ©
Total bags proactively spilled: ©

Total records proactively spilled: ©

Job DAG:
job_ 1443519499159 0004

2015-10-01 15:06:28,403 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MapReducelau
ncher - Success!

2015-10-01 15:06:28,441 [main] INFO org.apache.pig.data.SchemaTupleBackend -
Key [pig.schematuple] was not set... will not generate code.

2015-10-01 15:06:28,485 [main]

INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths
to process : 1

2015-10-01 15:06:28,485 [main]

INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total
input paths to process : 1

(1,Rajiv,Reddy,9848022337,Hyderabad)
(2,siddarth,Battacharya,9848022338,Kolkata)

(3,Rajesh,Khanna,9848022339,Delhi)

(4,Preethi,Agarwal,9848022330,Pune)

EIMPLYEAGSGYLEARMING

w \tutorialspoint

44

(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)
(6,Archana,Mishra, 9848022335, Chennai)

Apache Pig

I@j tutorialspoint

45

10. Describe Operator

The describe operator is used to view the schema of a relation.

Syntax

The syntax of the describe operator is as follows:

grunt> Describe Relation_name

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna, 9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy, 9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Now, let us describe the relation named student and verify the schema as shown below.

grunt> describe student;

Output

Once you execute the above Pig Latin statement, it will produce the following output.

grunt> student: { id: int,firstname: chararray,lastname: chararray,phone:
chararray,city: chararray }

46

@ tutorialspoint

EIMPLYEAGSGYLEARMING

11. Explain Operator

The explain operator is used to display the logical, physical, and MapReduce execution
plans of a relation.

Syntax

Given below is the syntax of the explain operator.

grunt> explain Relation_name;

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy, 9848022337 ,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy, 9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Now, let us explain the relation named student using the explain operator as shown
below.

grunt> explain student;

Output

It will produce the following output.

$ explain student;

2015-10-05 11:32:43,660 [main]

INFO org.apache.pig.newplan.logical.optimizer.LogicalPlanOptimizer -
{RULES_ENABLED=[AddForkEach, ColumnMapKeyPrune, ConstantCalculator,
GroupByConstParallelSetter, LimitOptimizer, LoadTypeCastInserter, MergeFilter,
MergeForEach, PartitionFilterOptimizer, PredicatePushdownOptimizer,
PushDownForEachFlatten, PushUpFilter, SplitFilter, StreamTypeCastInserter]}

New Logical Plan:

47

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

student: (Name: LOStore Schema:
id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#
35:chararray)
|
| ---student: (Name: LOForEach Schema:
id#31:int,firstname#32:chararray, lastname#33:chararray, phone#34:chararray,city#
35:chararray)

|

| (Name: LOGenerate[false,false,false,false,false] Schema:
id#31:int,firstname#32:chararray, lastname#33:chararray,phone#34:chararray,city#
35:chararray)ColumnPrune:InputUids=[34, 35, 32, 33,
31]ColumnPrune:OutputUids=[34, 35, 32, 33, 31]

(Name: Cast Type: int Uid: 31)

|---id:(Name: Project Type: bytearray Uid: 31 Input: © Column: (*))

(Name: Cast Type: chararray Uid: 32)

| ---firstname: (Name: Project Type: bytearray Uid: 32 Input: 1

I
I
I
I
I
I
I
(
I
I
I
I
(
I
I
I
I

Column: (*))

| (Name: Cast Type: chararray Uid: 33)

| I

| |---lastname: (Name: Project Type: bytearray Uid: 33 Input: 2
Column: (*))

| I

| (Name: Cast Type: chararray Uid: 34)

I I

| | ---phone: (Name: Project Type: bytearray Uid: 34 Input: 3 Column:
(*))

I

| | (Name: Cast Type: chararray Uid: 35)

I

| | |---city:(Name: Project Type: bytearray Uid: 35 Input: 4 Column:
(*))

---(Name: LOInnerLoad[@] Schema: id#31:bytearray)

---(Name: LOInnerlLoad[1] Schema: firstname#32:bytearray)

---(Name: LOInnerLoad[3] Schema: phone#34:bytearray)

||

|

|

||

|

| | ---(Name: LOInnerLoad[2] Schema: lastname#33:bytearray)
||

|

||

| | ---(Name: LOInnerLoad[4] Schema: city#35:bytearray)

I

| ---student: (Name: LOLoad Schema:
id#31:bytearray,firstname#32:bytearray, lastname#33:bytearray,phone#34:bytearray
,city#35:bytearray)RequiredFields:null

EIMPLYEAGSGYLEARMING

w \tutorialspoint

48

Apache Pig

student: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-36

| ---student: New For Each(false,false,false,false,false)[bag] - scope-35
I last[int] - scope-21
I I---Project[bytearray][@] - scope-20
I last[chararray] - scope-24
I I———Project[bytearray][l] - scope-23
I last[chararray] - scope-27
I I---Project[bytearray][Z] - scope-26
I last[chararray] - scope-30

I I———Project[bytearray][B] - scope-29

I éast[chararray] - scope-33

|

|

|

| ---Project[bytearray][4] - scope-32

| ---student:
Load(hdfs://localhost:9000/pig_data/student_data.txt:PigStorage(',"')) - scope-
19

2015-10-05 11:32:43,682 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelLayer.MRCompiler -
File concatenation threshold: 100 optimistic? false

2015-10-05 11:32:43,684 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MultiQueryOp
timizer - MR plan size before optimization: 1

2015-10-05 11:32:43,685 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.MultiQueryOp
timizer - MR plan size after optimization: 1

MapReduce node scope-37
Map Plan
student: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-36

| ---student: New For Each(false,false,false,false,false)[bag] - scope-35

Cast[int] - scope-21

|
|

| | ---Project[bytearray][@] - scope-20
|

| Cast[chararray] - scope-24

|

|

|

| ---Project[bytearray][1] - scope-23

EIMPLYEAGSGYLEARMING

w tutorialspoint

49

Cast[chararray] - scope-27

I
| ---Project[bytearray][2] - scope-26
I

Cast[chararray] - scope-30

I

|---Project[bytearray][3] - scope-29
I

Cast[chararray] - scope-33

| ---Project[bytearray][4] - scope-32

| ---student:

Load(hdfs://localhost:9000/pig data/student_data.txt:PigStorage(',')) - scope-

Apache Pig

&

tutorialspoint

EIMPLYEAGSGYLEARMING

50

12. lllustrate Command

The illustrate operator gives you the step-by-step execution of a sequence of statements.

Syntax

Given below is the syntax of the illustrate operator.

grunt> illustrate Relation_name;

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,98486022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna, 9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune

005, Trupthi,Mohanthy, 9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Now, let us illustrate the relation named student as shown below.

grunt> illustrate student;

Output

On executing the above statement, you will get the following output.

grunt> illustrate student;

INFO org.apache.pig.backend.hadoop.executionengine.mapReducelayer.PigMapOnly$M
ap - Aliases being processed per job phase (AliasName[line,offset]): M:
student[1,10] C: R:

| student | id:int | firstname:chararray | lastname:chararray
phone:chararray | city:chararray |

| | ee2 | siddarth

Battacharya | 9848022338 | Kolkata

51

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Part 6: Grouping and Joining

IIIIIIIIIIIIIIIIII

Apache Pig

52

13. Group Operator

The group operator is used to group the data in one or more relations. It collects the data
having the same key.

Syntax

Given below is the syntax of the group operator.

Group_data = GROUP Relation_name BY age;

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna, 22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Apache Pig with the schema name student_details as
shown below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray);

Now, let us group the records/tuples in the relation by age as shown below.

grunt> group_data = GROUP student_details by age;

Verification

Verify the relation group_data using the DUMP operator as shown below.

Dump group_data;

53

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Output

Then you will get output displaying the contents of the relation named groyp_data as
shown below. Here you can observe that the resulting schema has two columns -

e Oneis age, by which we have grouped the relation.

e The other is a bag, which contains the group of tuples, student records with the
respective age.

(21,{(4,Preethi,Agarwal,21,9848022330,Pune), (1,Rajiv,Reddy,21,9848022337,Hydera
bad)})

(22,{(3,Rajesh,Khanna,22,9848022339,Delhi), (2,siddarth,Battacharya,22,984802233
8,Kolkata)})

(23,{(6,Archana,Mishra, 23,9848022335,Chennai), (5,Trupthi,Mohanthy,23,9848022336
,Bhuwaneshwar)})

(24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai), (7,Komal,Nayak,24,9848022334,
trivendram)})

You can see the schema of the table after grouping the data using the describe command
as shown below.

grunt> Describe group_data;

group_data: {group: int,student_details: {(id: int,firstname:
chararray, lastname: chararray,age: int,phone: chararray,city: chararray)}}

In the same way, you can get the sample illustration of the schema using the illustrate
command as shown below.

$ Illustrate group_data;

It will produce the following output:

|group_data | group:int |
| student_details:bag{:tuple(id:int,firstname:chararray,lastname:chararray,age:i
nt,phone:chararray,city:chararray)}|

| | 21 | { 4, Preethi, Agarwal, 21, 9848022330, Pune), (1,
Rajiv, Reddy, 21, 9848022337, Hyderabad)}|

| | 2 | {(2,siddarth,Battacharya,22,9848022338,Kolkata),
(003,Rajesh,Khanna,22,9848022339,Delhi)}|

Grouping by Multiple Columns

Let us group the relation by age and city as shown below.

grunt> group_multiple = GROUP student_details by (age, city);

54

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

You can verify the content of the schema named group_multiple using the Dump
operator as shown below.

grunt> Dump group_multiple;

((21,Pune),{(4,Preethi,Agarwal,21,9848022330,Pune)})
((21,Hyderabad),{(1,Rajiv,Reddy,21,9848022337,Hyderabad)})
((22,Delhi), {(3,Rajesh,Khanna,22,9848022339,Delhi)})

((22,Kolkata), {(2,siddarth,Battacharya,22,9848022338,Kolkata)})
((23,Chennai),{(6,Archana,Mishra,23,9848022335,Chennai)})
((23,Bhuwaneshwar), {(5, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)})
((24,Chennai), {(8,Bharathi,Nambiayar,24,9848022333,Chennai)})
((24,trivendram),{(7,Komal,Nayak,24,9848022334,trivendram)})

Group All

You can group a relation by all the columns as shown below.

grunt> group_all = GROUP student_details All;

Now, verify the content of the schema group_all as shown below.

grunt> Dump group_all;

(all, {(8,Bharathi,Nambiayar,24,9848022333,Chennai), (7,Komal,Nayak,24,9848022334
,trivendram),

(6,Archana,Mishra, 23,9848022335,Chennai), (5,Trupthi,Mohanthy,23,9848022336,Bhuw
aneshwar),

(4,Preethi,Agarwal,21,9848022330,Pune), (3,Rajesh,Khanna,22,9848022339,Delhi),

(2,siddarth,Battacharya,22,9848022338,Kolkata), (1,Rajiv,Reddy,21,9848022337,Hyd
erabad)})

55

EIMPLYEAGSGYLEARMING

w \tutorialspoint

14. Cogroup Operator

The cogroup operator works more or less in the same way as the group operator. The
only difference between the two operators is that the group operator is normally used
with one relation, while the cogroup operator is used in statements involving two or more
relations.

Grouping Two Relations using Cogroup

Assume that we have two files namely student_details.txt and employee_details.txt
in the HDFS directory /pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy, 23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar, 24,9848022333,Chennai

employee_details.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar

006,Maggy,22,Chennai

And we have loaded these files into Pig with the schema names student_details and
employee_details respectively, as shown below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt’
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray);

employee_details = LOAD 'hdfs://localhost:9000/pig data/employee_details.txt'
USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

56

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Now, let us group the records/tuples of the relations student_details and
employee_details with the key age, as shown below.

grunt> cogroup_data = COGROUP student_details by age, employee_details by age;

Verification

Verify the relation cogroup_data using the DUMP operator as shown below.

Dump cogroup_data;

Output

It will produce the following output, displaying the contents of the relation named details
as shown below.

(21,{(4,Preethi,Agarwal,21,9848022330,Pune),
(1,Rajiv,Reddy,21,9848022337,Hyderabad)},

{ D

(22,{ (3,Rajesh,Khanna,22,9848022339,Delhi),
(2,siddarth,Battacharya,22,9848022338,Kolkata) },

{ (6,Maggy,22,Chennai), (1,Robin,22,newyork) })

(23,{(6,Archana,Mishra, 23,9848022335,Chennai), (5,Trupthi,Mohanthy,23,9848022336
,Bhuwaneshwar)},

{(5,David, 23, Bhuwaneshwar), (3,Maya, 23, Tokyo), (2,B0B,23,Kolkata)})

(24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai), (7,Komal,Nayak,24,9848022334,
trivendram)},

i

(25){ }J
{(4,Sara,25,London)})

The cogroup operator groups the tuples from each schema according to age where each
group depicts a particular age value.

For example, if we consider the 1%t tuple of the result, it is grouped by age 21. And it
contains two bags -

e the first bag holds all the tuples from the first schema (student_details in this
case) having age 21, and

e the second bag contains all the tuples from the second schema
(employee_details in this case) having age 21.

In case a schema doesn’t have tuples having the age value 21, it returns an empty bag.

57

EIMPLYEAGSGYLEARMING

w \tutorialspoint

15. Join Operator

The join operator is used to combine records from two or more relations. While performing
a join operation, we declare one (or a group of) tuple(s) from each relation, as keys. When
these keys match, the two particular tuples are matched, else the records are dropped.
Joins can be of the following types:

e Self-join
e Inner-join
e Quter-join : left join, right join, and full join
This chapter explains with examples how to use the join operator in Pig Latin. Assume

that we have two files namely customers.txt and orders.txt in the /pig_data/
directory of HDFS as shown below.

customers.txt

1,Ramesh, 32, Ahmedabad, 2000.00
2,Khilan,25,Delhi, 1500.00
3,kaushik,23,Kota, 2000.00
4,Chaitali,25,Mumbai, 6500.00
5,Hardik,27,Bhopal, 8500.00
6,Komal,22,MP,4500.00
7,Muffy,24,Indore, 10000.00

orders.txt

102,2009-10-08 00:00:00, 3, 3000
100,2009-10-08 00:00:00,3,1500
101,2009-11-20 00:00:00,2,1560
103,2008-05-20 00:00:00,4,2060

And we have loaded these two files into Pig with the schemas customers and orders as
shown below.

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING
PigStorage(',"')as (id:int, name:chararray, age:int, address:chararray,
salary:int);

orders = LOAD 'hdfs://localhost:9000/pig data/orders.txt' USING
PigStorage(',')as (oid:int, date:chararray, customer_id:int, amount:int);

Let us now perform various Join operations on these two schemas.

Inner Join

Inner Join is used quite frequently; it is also referred to as equijoin. An inner join returns
rows when there is a match in both tables.

58

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

It creates a new relation by combining column values of two relations (say A and B) based
upon the join-predicate. The query compares each row of A with each row of B to find all
pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, the
column values for each matched pair of rows of A and B are combined into a result row.

Syntax

Here is the syntax of performing inner join operation using the JOIN operator.

Relation3_name = JOIN Relationl_name BY key, Relation2_name BY key ;

Example

Let us perform inner join operation on the two relations customers and orders as shown
below.

grunt> coustomer_orders = JOIN customers BY id, orders BY customer_id;

Verification
Verify the relation coustomer_orders using the DUMP operator as shown below.

Dump coustomer_orders;

Output

You will get the following output that will the contents of the relation named
coustomer_orders.

(2,Khilan,25,Delhi, 1500,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai, 6500,103,2008-05-20 00:00:00,4,2060)

Self - join

Self-join is used to join a table with itself as if the table were two relations, temporarily
renaming at least one relation.

Generally, in Apache Pig, to perform self-join, we will load the same data multiple times,
under different aliases (names). Therefore let us load the contents of the file
customers.txt as two tables as shown below.

customersl = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING
PigStorage(',"')as (id:int, name:chararray, age:int, address:chararray,
salary:int);

customers2 = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING
PigStorage(',"')as (id:int, name:chararray, age:int, address:chararray,
salary:int);

59

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax

Given below is the syntax of performing self-join operation using the JOIN operator.

Relation3_name = JOIN Relationl_name BY key, Relation2_name BY key ;

Example

Let us perform self-join operation on the relation customers, by joining the two relations
customersl1 and customers2 as shown below.

grunt> customers3 = JOIN customersl BY id, customers2 BY id;

Verification

Verify the relation customers3 using the DUMP operator as shown below.

Dump customers3;

Output

It will produce the following output, displaying the contents of the relation customers.

(1,Ramesh,32,Ahmedabad, 2000, 1,Ramesh,32,Ahmedabad, 2000)
(2,Khilan,25,Delhi,1500,2,Khilan,25,Delhi, 1500)

(3, kaushik,23,Kota, 2000, 3,kaushik,23,Kota, 2000)
(4,Chaitali, 25,Mumbai, 6500,4,Chaitali,25,Mumbai, 6500)
(5,Hardik,27,Bhopal, 8500,5,Hardik,27,Bhopal, 8500)
(6,Komal,22,MP,4500,6,Komal,22,MP,4500)
(7,Muffy,24,Indore,10000,7,Muffy,24,Indore,10000)

Outer Join

Unlike inner join, outer join returns all the rows from at least one of the relations. An outer
join operation is carried out in three ways -

o Left outer join
e Right outer join

e Full outer join

Left Outer Join

The left outer Join operation returns all rows from the left table, even if there are no
matches in the right relation.

Syntax

Given below is the syntax of performing left outer join operation using the JOIN
operator.

60

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Relation3 name = JOIN Relationl_name BY id LEFT OUTER, Relation2_name BY
customer_id;

Example

Let us perform left outer join operation on the two relations customers and orders as
shown below.

grunt> outer_left = JOIN customers BY id LEFT OUTER, orders BY customer_id;

Verification

Verify the relation outer_left using the DUMP operator as shown below.

Dump outer_left;

Output

It will produce the following output, displaying the contents of the relation outer_left.

(1,Ramesh,32,Ahmedabad, 2009, ,,,)

(2,Khilan,25,Delhi, 1500,101,2009-11-20 00:00:00,2,1560)
(3, kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3, kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai, 6500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik,27,Bhopal, 8509,,,,)

(6,Komal,22,MP,4500,,,,)

(7,Muffy,24,Indore,10000,,,,)

Right Outer Join

The right outer join operation returns all rows from the right table, even if there are no
matches in the left table.

Syntax

Given below is the syntax of performing right outer join operation using the JOIN
operator.

grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;

Example

Let us perform right outer join operation on the two relations customers and orders
as shown below.

grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;

61

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Verification

Verify the relation outer_right using the DUMP operator as shown below.

grunt> Dump outer_right;

Output

It will produce the following output, displaying the contents of the relation outer_right.

(2,Khilan,25,Delhi, 1500,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai, 6500,103,2008-05-20 00:00:00,4,2060)

Full Outer Join

The full outer join operation returns rows when there is a match in one of the relations.

Syntax

Given below is the syntax of performing full outer join using the JOIN operator.

grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;

Example

Let us perform full outer join operation on the two relations customers and orders as
shown below.

grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;

Verification

Verify the relation outer_full using the DUMP operator as shown below.

grunt> Dump outer_full;

Output

It will produce the following output, displaying the contents of the relation outer_full.

(1,Ramesh,32,Ahmedabad, 2009, ,,,)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(3, kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3, kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik, 27,Bhopal, 8509, ,,,)

(6,Komal,22,MP,4500,,,,)

(7,Muffy, 24,Indore,10000,,,,)

62

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Using Multiple Keys

We can perform JOIN operation using multiple keys.

Syntax

Here is how you can perform a JOIN operation on two tables using multiple keys.

Relation3_name = JOIN Relation2_name BY (keyl, key2), Relation3_name BY (keyl,
key2);

Assume that we have two files namely employee.txt and employee_contact.txt in the
/pig_data/ directory of HDFS as shown below.

employee.txt

001,Rajiv,Reddy, 21,programmer, 003
002,siddarth,Battacharya, 22, programmer, 003
003,Rajesh,Khanna, 22, programmer, 003
004,Preethi,Agarwal,21,programmer, 003

005, Trupthi,Mohanthy, 23, programmer,003
006,Archana,Mishra, 23, programmer, 003
007,Komal,Nayak, 24,teamlead, 002
008,Bharathi,Nambiayar, 24,manager, 001

employee_contact.txt

001,9848022337,Rajiv@gmail.com,Hyderabad, 003
002,9848022338,siddarth@gmail.com,Kolkata, 003
003,9848022339,Rajesh@gmail.com,Delhi, 003
004,9848022330,Preethi@gmail.com,Pune, 003
005,9848022336, Trupthi@gmail.com,Bhuwaneshwar,003
006,9848022335,Archana@gmail.com,Chennai, 003
007,9848022334 ,Komal@gmail.com,trivendram, 002

008,9848022333,Bharathi@gmail.com,Chennai, 001

And we have loaded these two files into Pig with schemas employee and
employee_contact as shown below.

employee = LOAD 'hdfs://localhost:9000/pig_data/employee.txt' USING
PigStorage(', ')as (id:int, firstname:chararray, lastname:chararray, age:int,
designation:chararray, jobid:int);

employee_contact = LOAD 'hdfs://localhost:9000/pig data/employee_contact.txt'
USING PigStorage(',')as (id:int, phone:chararray, email:chararray,
city:chararray, jobid:int);

Now, let us join the contents of these two relations using the JOIN operator as shown
below.

emp = JOIN employee BY (id,jobid), employee contact BY (id,jobid);

63

EIMPLYEAGSGYLEARMING

w \tutorialspoint

mailto:Rajiv@gmail.com
mailto:siddarth@gmail.com
mailto:Rajesh@gmail.com
mailto:Preethi@gmail.com
mailto:Trupthi@gmail.com
mailto:Archana@gmail.com
mailto:Komal@gmail.com
mailto:Bharathi@gmail.com

Apache Pig

Verification

Verify the relation emp using the DUMP operator as shown below.

Dump emp;

Output

It will produce the following output, displaying the contents of the relation named emp as
shown below.

(1,Rajiv,Reddy,21,programmer,113,1,9848022337,Rajiv@gmail.com,Hyderabad, 113)

(2,siddarth,Battacharya,22,programmer,113,2,9848022338,siddarth@gmail.com,Kolka
ta,113)

(3,Rajesh,Khanna,22,programmer,113,3,9848022339,Rajesh@gmail.com,Delhi,113)

(4,Preethi,Agarwal,21,programmer,113,4,9848022330,Preethi@gmail.com,Pune,113)

(5,Trupthi,Mohanthy,23,programmer,113,5,9848022336, Trupthi@gmail.com,Bhuwaneshw
ar,113)

(6,Archana,Mishra, 23, programmer,113,6,9848022335,Archana@gmail.com,Chennai, 113)

(7,Komal,Nayak, 24, teamlead,112,7,9848022334,Komal@gmail.com,trivendram, 112)

(8,Bharathi,Nambiayar,24,manager,111,8,9848022333,Bharathi@gmail.com,Chennai, 111)

64

EIMPLYEAGSGYLEARMING

w \tutorialspoint

mailto:Rajiv@gmail.com
mailto:siddarth@gmail.com
mailto:Rajesh@gmail.com
mailto:Preethi@gmail.com
mailto:Trupthi@gmail.com
mailto:Archana@gmail.com
mailto:Komal@gmail.com
mailto:Bharathi@gmail.com

16. Cross Operator

The cross operator computes the cross-product of two or more relations. This chapter
explains with example how to use the cross operator in Pig Latin.

Syntax

Given below is the syntax of the Cross operator.

Relation3_name = CROSS Relationl_name, Relation2_name;

Example

Assume that we have two files namely customers.txt and orders.txt in the
/pig_data/ directory of HDFS as shown below.

customers.txt

1,Ramesh, 32, Ahmedabad, 2000.00
2,Khilan, 25,Delhi, 1500.00

3, kaushik,23,Kota,2000.00
4,Chaitali,25,Mumbai,6500.00
5,Hardik,27,Bhopal, 8500.00
6,Komal,22,MP,4500.00
7,Muffy,24,Indore, 10000.00

orders.txt

102,2009-10-08 00:00:00,3,3000
100,2009-10-08 00:00:00,3,1500
101,2009-11-20 00:00:00,2,1560
103,2008-05-20 00:00:00,4,2060

And we have loaded these two files into Pig with the schemas customers and orders as
shown below.

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING
PigStorage(',')as (id:int, name:chararray, age:int, address:chararray,
salary:int);

orders = LOAD 'hdfs://localhost:9000/pig _data/orders.txt’' USING
PigStorage(',')as (oid:int, date:chararray, customer_id:int, amount:int);

Let us now get the cross-product of these two schemas using the cross operator on these
two schemas as shown below.

cross_data = CROSS customers, orders;

65

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Verification

Verify the relation cross_data using the DUMP operator as shown below.

Dump cross_data;

Output

It will produce the following output, displaying the contents of the relation cross_data.

(7,Muffy, 24, Indore,10000,103,2008-05-20 00:00:00,4,2060)
(7,Muffy, 24, Indore,10000,101,2009-11-20 00:00:00,2,1560)
(7,Muffy, 24, Indore,10000,100,2009-10-08 00:00:00,3,1500)
(7,Muffy, 24, Indore,10000,102,2009-10-08 00:00:00,3,3000)
(6,Komal,22,MP,4500,103,2008-05-20 00:00:00,4,2060)
(6,Komal,22,MP,4500,101,2009-11-20 00:00:00,2,1560)
(6,Komal,22,MP,4500,100,2009-10-08 00:00:00,3,1500)
(6,Komal,22,MP,4500,102,2009-10-08 00:00:00,3,3000)
(5,Hardik,27,Bhopal, 8500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik,27,Bhopal, 8500,101,2009-11-20 00:00:00,2,1560)
(5,Hardik,27,Bhopal, 8500,100,2009-10-08 00:00:00,3,1500)
(5,Hardik,27,Bhopal, 8500,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
(4,Chaitali,25,Mumbai,6500,101,2009-20 00:00:00,4,2060)
(2,Khilan,25,Delhi, 1500,101,2009-11-20 00:00:00,2,1560)
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)
(1,Ramesh,32,Ahmedabad, 2000,103,2008-05-20 00:00:00,4,2060)
(1,Ramesh,32,Ahmedabad, 2000,101,2009-11-20 00:00:00,2,1560)
(1,Ramesh,32,Ahmedabad, 2000,100,2009-10-08 00:00:00,3,1500)
(1,Ramesh, 32, Ahmedabad, 2000,102,2009-10-08 00:00:00,3,3000)-11-20 00:00:00,2,1560)
(4,Chaitali,25,Mumbai,6500,100,2009-10-08 00:00:00,3,1500)
(4,Chaitali,25,Mumbai,6500,102,2009-10-08 00:00:00,3,3000)
(3, kaushik,23,Kota,2000,103,2008-05-20 00:00:00,4,2060)

(3, kaushik,23,Kota, 2000,101,2009-11-20 00:00:00,2,1560)

(3, kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)

(3, kaushik,23,Kota, 2000,102,2009-10-08 00:00:00,3,3000)
(2,Khilan,25,Delhi,1500,103,2008-05-20 00:00:00,4,2060)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)

66

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)

(1,Ramesh,32,Ahmedabad, 2000,103,2008-05-20 00:00:00,4,2060)
(1,Ramesh,32,Ahmedabad, 2000,101,2009-11-20 00:00:00,2,1560)
(1,Ramesh,32,Ahmedabad, 2000,100,2009-10-08 00:00:00,3,1500)
(1,Ramesh,32,Ahmedabad, 2000,102,2009-10-08 00:00:00,3,3000)

MPLYEAEGEYLEARNINLG

M Mtutorialspoint

67

Part 7: Combining and Splitting

@tutnr‘ialspcint

Apache Pig

68

17. Union Operator

The UNION operator of Pig Latin is used to merge the content of two relations. To perform
UNION operation on two relations, their columns and domains must be identical.

Syntax
Given below is the syntax of the UNION operator.

grunt> Relation_name3 = UNION Relation_namel, Relation_name2;

Example

Assume that we have two files namely student_datal.txt and student_data2.txt in the
/pig_data/ directory of HDFS as shown below.

Student_datal.txt

001,Rajiv,Reddy,98486022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna, 9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy, 9848022336, Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

Student_data2.txt

7,Komal,Nayak, 9848022334, trivendranm.
8,Bharathi,Nambiayar, 9848022333, Chennai.

And we have loaded these two files into Pig with the schemas student1 and student2 as
shown below.

studentl = LOAD 'hdfs://localhost:9000/pig data/student_datal.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

student2 = LOAD 'hdfs://localhost:9000/pig data/student_data2.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Let us now merge the contents of these two relations using the UNION operator as shown
below.

student = UNION studentl, student2;

69

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Verification

Verify the relation student using the DUMP operator as shown below.

Dump student;

Output

It will display the following output, displaying the contents of the relation student.

(1,Rajiv,Reddy,9848022337,Hyderabad)
(2,siddarth,Battacharya,9848022338,Kolkata)
(3,Rajesh,Khanna,9848022339,Delhi)
(4,Preethi,Agarwal, 9848022330,Pune)
(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)
(6,Archana,Mishra,9848022335,Chennai)
(7,Komal,Nayak,9848022334,trivendram)
(8,Bharathi,Nambiayar,9848022333,Chennai)

EIMPLYEAGSGYLEARMING

w \tutorialspoint

70

18. Split Operator

The Split operator is used to split a relation into two or more relations.

Syntax
Given below is the syntax of the SPLIT operator.

grunt> SPLIT Relationl name INTO Relation2 name IF (conditionl), Relation2_name
(condition2),

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna, 22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown
below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray);

Let us now split the relation into two, one listing the employees of age less than 23, and
the other listing the employees having the age between 22 and 25.

SPLIT student_details into student_detailsl if age<23, student_details2 if
(22<age and age<25);

71

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Verification

Verify the relations student_detailsl and student_details2 using the DUMP operator
as shown below.

Dump student_detailsl;

Dump student_details2;

Output

It will produce the following output, displaying the contents of the relations
student_details1l and student_details2 respectively.

Dump student_detailsl;
(1,Rajiv,Reddy,21,9848022337,Hyderabad)
(2,siddarth,Battacharya,22,9848022338,Kolkata)
(3,Rajesh,Khanna, 22,9848022339,Delhi)
(4,Preethi,Agarwal,21,9848022330,Pune)

Dump student_details2;
(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)
(6,Archana,Mishra, 23,9848022335,Chennai)
(7,Komal,Nayak,24,9848022334,trivendram)
(8,Bharathi,Nambiayar,24,9848022333,Chennai)

72

w \tutorialspoint

EIMPLYEAGSGYLEARMING

&

Part 8: Filtering

tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

73

19. Filter Operator

The filter operator is used to select the required tuples from a relation based on a
condition.

Syntax
Given below is the syntax of the FILTER operator.

grunt> Relation2 name = FILTER Relationl name BY (condition);

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna, 22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown
below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray);

Let us now use the Filter operator to get the details of the students who belong to the
city Chennai.

filter_data = FILTER student_details BY city == 'Chennai';

Verification

Verify the relation filter_data using the DUMP operator as shown below.

Dump filter_data;

74

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Output

It will produce the following output, displaying the contents of the relation filter_data as
follows.

(6,Archana,Mishra, 23,9848022335,Chennai)
(8,Bharathi,Nambiayar,24,9848022333,Chennai)

75

I@j tutorialspoint

20. Distinct Operator

The Distinct operator is used to remove redundant (duplicate) tuples from a relation.

Syntax
Given below is the syntax of the DISTINCT operator.

grunt> Relation_name2 = DISTINCT Relatin_namel;

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy, 9848022337 ,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
002,siddarth,Battacharya, 9848022338,Kolkata
003,Rajesh,Khanna, 9848022339,Delhi
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal, 9848022330, Pune

005, Trupthi,Mohanthy, 9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai
006,Archana,Mishra,9848022335,Chennai

And we have loaded this file into Pig with the schema name student_details as shown
below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'
USING PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

Let us now remove the redundant (duplicate) tuples from the relation named
student_details using the DISTINCT operator, and store it as another relation named
data as shown below.

distinct_data = DISTINCT student_details;

Verification
Verify the relation distinct_data using the DUMP operator as shown below.

Dump distinct_data;

76

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Output

Apache Pig

It will produce the following output, displaying the contents of the relation distinct_data

as follows.

(1,Rajiv,Reddy, 9848022337 ,Hyderabad)
(2,siddarth,Battacharya,9848022338,Kolkata)
(3,Rajesh,Khanna,9848022339,Delhi)
(4,Preethi,Agarwal,9848022330,Pune)
(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)
(6,Archana,Mishra, 9848022335, Chennai)

MPLYEAEGEYLEARNINLG

I@j Mtutorialspoint

77

21. Foreach Operator

The FOREACH operator is used to generate specified data transformations based on the
column data.

Syntax

Given below is the syntax of foreach operator.

grunt> Relation _name2 = FOREACH Relatin_namel GENERATE (required data);

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna, 22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra, 23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown
below.

student_details = LOAD 'hdfs://localhost:9000/pig data/student_details.txt'
USING PigStorage(',')as (id:int, firstname:chararray,
lastname:chararray,age:int, phone:chararray, city:chararray);

Let us now get the id, age, and city values of each student from the relation
student_details and store it into another relation named data using the foreach
operator as shown below.

foreach_data = FOREACH student_details GENERATE id,age,city;

Verification

Verify the relation foreach_data using the DUMP operator as shown below.

Dump foreach_data;

78

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Output

Apache Pig

It will produce the following output, displaying the contents of the relation foreach_data.

(1,21,Hyderabad)
(2,22,Kolkata)
(3,22,Delhi)
(4,21,Pune)
(5,23,Bhuwaneshwar)
(6,23,Chennai)
(7,24,trivendram)
(8,24,Chennai)

MPLYEAEGEYLEARNINLG

I@j Mtutorialspoint

79

&

Part 9: Sorting

tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

80

22. Order By

The ORDER BY operator is used to display the contents of a relation in a sorted order based
on one or more fields.

Syntax
Given below is the syntax of the ORDER BY operator.

grunt> Relation_name2 = ORDER Relatin_namel BY (ASC|DESC);

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna, 22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown
below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'
USING PigStorage(',')as (id:int, firstname:chararray,
lastname:chararray,age:int, phone:chararray, city:chararray);

Let us now sort the relation in a descending order based on the age of the student and
store it into another relation named data using the ORDER BY operator as shown below.

order_by data = ORDER student_details BY age DESC;

Verification

Verify the relation order_by_data using the DUMP operator as shown below.

Dump order_by_data;

81

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Output

It will produce the following output, displaying the contents of the
order_by_data.

relation

(8,Bharathi,Nambiayar,24,9848022333,Chennai)
(7,Komal,Nayak,24,9848022334,trivendram)
(6,Archana,Mishra, 23,9848022335,Chennai)
(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)
(3,Rajesh,Khanna,22,9848022339,Delhi)
(2,siddarth,Battacharya,22,9848022338,Kolkata)
(4,Preethi,Agarwal,21,9848022330,Pune)
(1,Rajiv,Reddy,21,9848022337,Hyderabad)

MPLYEAEGEYLEARNINLG

I@j Mtutorialspoint

82

23. Limit Operator

The LIMIT operator is used to get a limited number of tuples from a relation.

Syntax
Given below is the syntax of the LIMIT operator.

grunt> Result = LIMIT Relation_name required number of tuples;

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown
below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt’
USING PigStorage(',')as (id:int, firstname:chararray,
lastname:chararray,age:int, phone:chararray, city:chararray);

Now, let’s sort the relation in descending order based on the age of the student and store
it into another relation named limit_data using the ORDER BY operator as shown below.

limit_data = LIMIT student_details 4;

Verification

Verify the relation limit_data using the DUMP operator as shown below.

Dump limit_data;

83

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Output

Apache Pig

It will produce the following output, displaying the contents of the relation limit_data as

follows.

(1,Rajiv,Reddy,21,9848022337,Hyderabad)
(2,siddarth,Battacharya,22,9848022338,Kolkata)
(3,Rajesh,Khanna,22,9848022339,Delhi)
(4,Preethi,Agarwal,21,9848022330,Pune)

EIMPLYEAGSGYLEARMING

I@j Mtutorialspoint

84

Apache Pig

Part 10: Pig Latin Built-in Functions

85

IIIIIIIIIIIIIIIIII

24. Eval Functions

Apache Pig provides various built-in functions namely eval, load/store, math, string,
bag and tuple functions.

Eval Functions

Given below is the list of eval functions provided by Apache Pig.

Function

Description

AVG

To compute the average of the numerical values within a bag.

BagToString

To concatenate the elements of a bag into a string. While
concatenating, we can place a delimiter between these values
(optional).

CONCAT To concatenate two or more expressions of same type.
To get the number of elements in a bag, while counting the number

COUNT .
of tuples in a bag.

COUNT_STAR It is S|mllqr to the COUNT() function. It is used to get the number of
elements in a bag.

DIFF To compare two bags (fields) in a tuple.

IsEmpty To check if a bag or map is empty.

MAX To calculate the highest value for a column (numeric values or
chararrays) in a single-column bag.

MIN To get the minimum (lowest) value (numeric or chararray) for a
certain column in a single-column bag.
Using the Pig Latin PluckTuple() function, we can define a string

PluckTuple Prefix and filter the columns in a relation that begin with the given
prefix.

SIZE To compute the number of elements based on any Pig data type.

“

86

tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

To subtract two bags. It takes two bags as inputs and returns a bag
SUBTRACT which contains the tuples of the first bag that are not in the second
bag.

SUM To get the total of the numeric values of a column in a single-column
bag.

To split a string (which contains a group of words) in a single tuple

TOKENIZE and return a bag which contains the output of the split operation.

AVG

The Pig-Latin AVG() function is used to compute the average of the numerical values
within a bag. While calculating the average value, the AVG() function ignores the NULL
values.

Note:
e To get the global average value, we need to perform a Group All operation, and
calculate the average value using the AVG function.

e To get the average value of a group, we need to group it using the Group By
operator and proceed with the average function.

Syntax

Given below is the syntax of the AVG function.

grunt> AVG(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad, 89
002,siddarth,Battacharya,22,9848022338,Kolkata,78
003,Rajesh,Khanna,22,9848022339,Delhi, 90
004,Preethi,Agarwal,21,9848022330,Pune, 93

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75
006,Archana,Mishra, 23,9848022335,Chennai, 87
007,Komal,Nayak, 24,9848022334,trivendram, 83
008,Bharathi,Nambiayar, 24,9848022333,Chennai, 72

87

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig data/student_data.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Average GPA

We can use the built-in function AVG (case-sensitive) to calculate the average of a set of
numerical values. Let’s group the schema student_details using the Group All operator,
and store the result in the schema named student_group_all as shown below.

grunt> student_group_all = Group student_details All;

This will produce a schema as shown below.

grunt> Dump student_group_all;

(all, {(8,Bharathi,Nambiayar,24,9848022333,Chennai,72), (7,Komal,Nayak,24,9848022
334,trivendram,83), (6,Archana,Mishra,23,9848022335,Chennai,87), (5,Trupthi,Mohan
thy,23,9848022336,Bhuwaneshwar,75), (4,Preethi,Agarwal,21,9848022330,Pune,93), (3
,Rajesh,Khanna,22,9848022339,Delhi,90), (2,siddarth,Battacharya,22,9848022338,Ko
lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate the global average GPA of all the students using the AVG function as
shown below.

grunt> student_gpa_avg = foreach student_group_all Generate
(student_details.firstname, student_details.gpa), AVG(student_details.gpa);

Verification

Verify the relation student_gpa_avg using the DUMP operator as shown below.

grunt> Dump student_gpa_avg;

Output
It will display the contents of the relation student_gpa_avg as follows.

(({(Bharathi), (Komal), (Archana), (Trupthi), (Preethi), (Rajesh), (siddarth), (Rajiv)
s

{ 2y , (83, (87) , (75 , (93) , (%9) , (78) ,
(89) 1}),83.375)

Max

The Pig Latin Max() function is used to calculate the highest value for a column (numeric
values or chararrays) in a single-column bag. While calculating the maximum value, the
Max() function ignores the NULL values.

88

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Note:
e To get the global maximum value, we need to perform a Group All operation, and
calculate the average value using the AVG function.

e To get the maximum value of a group, we need to group it using the Group By
operator and proceed with the average function.

Syntax

Given below is the syntax of the Max() function.

grunt> Max(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad, 89
002,siddarth,Battacharya,22,9848022338,Kolkata, 78
003,Rajesh,Khanna,22,9848022339,Delhi, 90
004,Preethi,Agarwal,21,9848022330,Pune, 93

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar, 75
006,Archana,Mishra, 23,9848022335,Chennai, 87
007,Komal,Nayak, 24,9848022334,trivendram, 83
008,Bharathi,Nambiayar,24,9848022333,Chennai, 72

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig _data/student_data.txt’
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Maximum GPA

We can use the built-in function MAX (case-sensitive) to calculate the maximum value
from a set of given numerical values. Let us group the schema student_details using the
Group All operator, and store the result in the schema named student_group_all as
shown below.

grunt> student_group_all = Group student_details All;

This will produce a schema as shown below.

grunt> Dump student_group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72),(7,Komal,Nayak,24,9848022
334,trivendram,83), (6,Archana,Mishra, 23,9848022335,Chennai,87), (5,Trupthi,Mohan
thy,23,9848022336,Bhuwaneshwar,75), (4,Preethi, Agarwal,21,9848022330,Pune,93), (3

89

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

,Rajesh,Khanna,22,9848022339,Delhi,90), (2,siddarth,Battacharya,22,9848022338,Ko
lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate the global maximum of GPA, i.e., maximum among the GPA values
of all the students using the MAX function as shown below.

grunt> student_gpa_max = foreach student_group_all Generate
(student_details.firstname, student_details.gpa), MAX(student_details.gpa);

Verification

Verify the relation student_gpa_max using the DUMP operator as shown below.

grunt> Dump student_gpa_max;

Output

It will produce the following output, displaying the contents of the relation
student_gpa_max.

(({(Bharathi), (Komal), (Archana), (Trupthi), (Preethi), (Rajesh), (siddarth), (Rajiv)
}o

{ (72) > (83) 87) (75) , (93) , (%¢) ,
(78) , (89) }) ,93)

Min
The Min() function of Pig Latin is used to get the minimum (lowest) value (numeric or

chararray) for a certain column in a single-column bag. While calculating the minimum
value, the Min() function ignores the NULL values.

Note:

e To get the global minimum value, we need to perform a Group All operation, and
calculate the average value using the AVG function.

e To get the minimum value of a group, we need to group it using the Group By
operator and proceed with the average function.

Syntax

Given below is the syntax of the Min() function.

grunt> MIN(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

90

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad, 89
002,siddarth,Battacharya,22,9848022338,Kolkata, 78
003,Rajesh,Khanna,22,9848022339,Delhi, 90
004,Preethi,Agarwal,21,9848022330,Pune, 93

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75
006,Archana,Mishra, 23,9848022335,Chennai, 87
007,Komal,Nayak,24,9848022334,trivendram, 83
008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema named student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig _data/student_data.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Minimum GPA

We can use the built-in function MIN() (case sensitive) to calculate the minimum value
from a set of given numerical values. Let us group the schema student_details using the
Group All operator, and store the result in the schema named student_group_all as
shown below.

grunt> student_group_all = Group student_details All;

It will produce a schema as shown below.

grunt> Dump student_group_all;

(all, {(8,Bharathi,Nambiayar,24,9848022333,Chennai,72), (7,Komal,Nayak,24,9848022
334,trivendram,83), (6,Archana,Mishra, 23,9848022335,Chennai,87), (5,Trupthi,Mohan
thy,23,9848022336,Bhuwaneshwar,75), (4,Preethi,Agarwal,21,9848022330,Pune,93), (3
,Rajesh,Khanna,22,9848022339,Delhi,90), (2,siddarth,Battacharya,22,9848022338,Ko
lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate the global minimum of GPA, i.e., minimum among the GPA values of
all the students using the MIN function as shown below.

grunt> student_gpa _min = foreach student_group_all Generate
(student_details.firstname, student_details.gpa), MIN(student_details.gpa);

Verification

Verify the relation student_gpa_min using the DUMP operator as shown below.

grunt> Dump student_gpa_min;

91

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Output

It will produce the following output, displaying the contents of the relation
student_gpa_min.

(({(Bharathi), (Komal), (Archana), (Trupthi), (Preethi), (Rajesh), (siddarth), (Rajiv)
}o

{ (72) > (83) 87) (75) , (93) , (%0) ,
(78) , (89) }) 72)

Count

The count() function of Pig Latin is used to get the number of elements in a bag. While
counting the number of tuples in a bag, the count() function ignores (will not count) the
tuples having a NULL value in the FIRST FIELD.

Note:

e To get the global count value (total number of tuples in a bag), we need to perform
a Group All operation, and calculate the average value using the AVG function.

e To get the count value of a group (Number of tuples in a group), we need to group
it using the Group By operator and proceed with the average function.

Syntax

Given below is the syntax of the count() function.

grunt> COUNT(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad, 89
002,siddarth,Battacharya,22,9848022338,Kolkata, 78
003,Rajesh,Khanna,22,9848022339,Delhi, 90
004,Preethi,Agarwal,21,9848022330,Pune, 93

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar, 75
006,Archana,Mishra, 23,9848022335,Chennai, 87
007,Komal,Nayak, 24,9848022334,trivendram, 83
008,Bharathi,Nambiayar,24,9848022333,Chennai, 72

And we have loaded this file into Pig with the schema named student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray, gpa:int);

92

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Calculating the Number of Tuples

We can use the built-in function COUNT() (case sensitive) to calculate the number of
tuples in a relation. Let us group the schema student_details using the Group All
operator, and store the result in the schema named student_group_all as shown below.

grunt> student_group_all = Group student_details All;

It will produce a schema as shown below.

grunt> Dump student_group_all;

(all, {(8,Bharathi,Nambiayar,24,9848022333,Chennai,72), (7,Komal,Nayak,24,9848022
334,trivendram,83), (6,Archana,Mishra,23,9848022335,Chennai,87), (5,Trupthi,Mohan
thy,23,9848022336,Bhuwaneshwar,75), (4,Preethi,Agarwal,21,9848022330,Pune,93),(3
,Rajesh,Khanna,22,9848022339,Delhi,90), (2,siddarth,Battacharya,22,9848022338,Ko
lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate number of tuples/records in the relation.

grunt> student_count = foreach student_group_all Generate
COUNT (student_details.gpa);

Verification

Verify the relation student_count using the DUMP operator as shown below.

grunt> Dump student_count;

Output

It will produce the following output, displaying the contents of the relation
student_count.

COUNT STAR

The COUNT_STAR() function of Pig Latin is similar to the COUNT() function. It is used
to get the number of elements in a bag. While counting the elements, the COUNT_STAR()
function includes the NULL values.

Note:

e To get the global count value (total humber of tuples in a bag), we need to perform
a Group All operation, and calculate the average value using the AVG function.

e To get the count value of a group (Number of tuples in a group), we need to group
it using the Group By operator and proceed with the average function.

93

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax
Given below is the syntax of the COUNT_STAR function.

grunt> COUNT_STAR(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below. This file contains an empty record.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad, 89
002,siddarth,Battacharya,22,9848022338,Kolkata,78
003,Rajesh,Khanna,22,9848022339,Delhi, 90
004,Preethi,Agarwal,21,9848022330,Pune, 93

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar, 75
006,Archana,Mishra, 23,9848022335,Chennai, 87
007,Komal,Nayak, 24,9848022334,trivendram, 83
008,Bharathi,Nambiayar,24,9848022333,Chennai, 72

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig _data/student_data.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Number of Tuples

We can use the built-in function COUNT_STAR() to calculate the number of tuples in a
relation. Let us group the schema student_details using the Group All operator, and
store the result in the schema named student_group_all as shown below.

grunt> student_group_all = Group student_details All;

It will produce a schema as shown below.

grunt> Dump student_group all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72), (7,Komal,Nayak,24,9848022
334,trivendram,83), (6,Archana,Mishra, 23,9848022335,Chennai,87), (5, Trupthi,Mohan
thy,23,9848022336,Bhuwaneshwar,75), (4,Preethi,Agarwal,21,9848022330,Pune,93), (3
,Rajesh,Khanna,22,9848022339,Delhi,90), (2,siddarth,Battacharya,22,9848022338,Ko
lkata,78), (1,Rajiv,Reddy,21,9848022337,Hyderabad,89),(, , , » 5 ,)})

94

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Let us now calculate the number of tuples/records in the relation.

grunt> student_count = foreach student_group_all Generate
COUNT_STAR(student_details.gpa);

Verification

Verify the relation student_count using the DUMP operator as shown below.

grunt> Dump student_count;

Output

It will produce the following output, displaying the contents of the relation
student_count.

Since we have used the function COUNT_STAR, it included the null tuple and returned 9.

Sum

You can use the Sum() function of Pig Latin to get the total of the numeric values of a
column in a single-column bag. While computing the total, the sum() function ignores the
NULL values.

Note:

e To get the global sum value, we need to perform a Group All operation, and
calculate the average value using the AVG function.

e To get the sum value of a group, we need to group it using the Group By operator
and proceed with the average function.

Syntax

Given below is the syntax of the sum() function.

grunt> SUM(expression)

Example

Assume that we have a file named employee.txt in the HDFS directory /pig_data/ as
shown below.

employee.txt

1,John,2007-01-24,250
2,Ram, 2007-05-27,220
3,Jack,2007-05-06,170
3,Jack,2007-04-06,100
95

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

4,3ill,2007-04-06,220
5,Zara,2007-06-06,300
5,Zara,2007-02-06,350

And we have loaded this file into Pig with the schema name employee_data as shown
below.

grunt> employee_data = LOAD 'hdfs://localhost:9000/pig_data/ employee.txt’
USING PigStorage(',')as (id:int, name:chararray, workdate:chararray,
daily_ typing pages:int);

Calculating the Sum of All GPA

To demonstrate the SUM() function, let’s try to calculate the total number of pages typed
daily of all the employees. We can use the Apache Pig’s built-in function SUM() (case
sensitive) to calculate the sum of the numerical values. Let us group the schema
employee_data using the Group All operator, and store the result in the schema named
employee_group as shown below.

grunt> employee_group = Group employee_data all;

It will produce a schema as shown below.

grunt> Dump employee_group;

(all,{(5,Zara,2007-02-06,350), (5,Zara,2007-06-06,300), (4,1ill, 2007-04-
06,220), (3,Jack, 2007-04-06,100), (3,Jack,2007-05-06,170), (2,Ram, 2007 -05-
27,220),(1,John,2007-01-24,250)})

Let us now calculate the global sum of the pages typed daily.

grunt> student_workpages_sum = foreach employee_group Generate
(employee_data.name,employee_data.daily typing pages),SUM(employee data.daily_t
yping_pages);

Verification

Verify the relation student_workpages_sum using the DUMP operator as shown below.

grunt> Dump student_workpages_sum;

Output

It will produce the following output, displaying the contents of the relation
student_workpages_sum as follows.

(({ (zara), (zara), (3ill) ,(Jack) , (Jack) , (Ram) , (John) 1},
{ (350) , (300) , (220) ,(1@0) , (176) , (220) , (250) 1}),1610)

96

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://employee_data.name/

Apache Pig

DIFF

The DIFF() function of Pig Latin is used to compare two bags (fields) in a tuple. It takes
two fields of a tuple as input and matches them. If they match, it returns an empty bag.
If they do not match, it finds the elements that exist in one filed (bag) and not found in
the other, and returns these elements by wrapping them within a bag.

Syntax
Given below is the syntax of the DIFF() function.

grunt> DIFF (expression, expression)

Example

Generally the Diff() function compares two bags in a tuple. Given below is an example of
the DIFF() function. Here we consider two schemas, cogroup them, and perform DIFF()
function on them.

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS
directory /pig_data/ as shown below. The emp_sales.txt contains the details of the
employees of the sales department and the emp_bonus.txt contains the employee details
who got bonus.

emp_sales.txt

1,Robin,22,25000,sales
2,B0B,23,30000,sales

3,Maya, 23,25000, sales
4,Sara,25,40000,sales
5,David,23,45000,sales
6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales
2,Jaya, 23,20000,admin
3,Maya, 23,25000, sales
4,Alia, 25,50000,admin
5,David, 23,45000,sales
6,0mar, 30,30000, admin

And we have loaded these files into Pig, with the schema names emp_sales and
emp_bonus respectively.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING
PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING
PigStorage(', ')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

Group the records/tuples of the relations emp_sales and emp_bonus with the key sno,
using the COGROUP operator as shown below.

cogroup_data = COGROUP emp_sales by sno, emp_bonus by sno;

Verify the relation details using the DUMP operator as shown below.

grunt> Dump cogroup_data;

(1,{(1,Robin,22,25000,sales)},{(1,Robin,22,15000,sales)})
(2,{(2,B0B,23,30000,sales)},{(2,Jaya,23,12000,admin)})
(3,{(3,Maya, 23,25000,sales)}, {(3,Maya,23,10000,sales)})
(4,{(4,Sara,25,40000,sales)},{(4,Alia, 25,8000,admin)})
(5,{(5,David,23,45000,sales)},{(5,David,23,6000,sales)})

(6,{(6,Maggy,22,35000,sales)},{(6,0mar,30,3000,admin)})

Calculating the Difference between Two Schemas

Let us now calculate the difference between the two schemas using DIFF() function and
store it in the schema diff_data as shown below.

diff_data = FOREACH cogroup_data GENERATE DIFF(emp_sales,emp_bonus);

Verification

Verify the schema diff_data using the DUMP operator as shown below.

Dump diff_data;

M
({(2,B0B,23,30000,sales), (2,Jaya, 23,20000,admin)})

«hH
({(4,Sara, 25,40000,sales), (4,Alia, 25,50000,admin)})

«H
({(6,Maggy,22,35000,sales), (6,0mar,30,30000,admin)})

The diff_data schema will have an empty tuple if the records in emp_bonus and
emp_sales match. In other cases, it will hold tuples from both the schemas (tuples that
differ).

For example, if you consider the records having sno as 1, then you will find them same in
both the schemas ((1,Robin,22,25000,sales), (1,Robin,22,15000,sales)). Therefore,

98

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

in the diff_data schema, which is the result of DIFF() function, you will get an empty
tuple for sno 1.

SUBTRACT

The subtract() function of Pig Latin is used to subtract two bags. It takes two bags as
inputs and returns a bag which contains the tuples of the first bag that are not in the
second bag.

Syntax

Given below is the syntax of the subtract() function.

SUBTRACT (expression, expression)

Example

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS
directory /pig_data/ as shown below. The emp_sales.txt contains the details of the
employees of the sales department and the emp_bonus.txt contains the employee details
who got bonus.

emp_sales.txt

1,Robin,22,25000,sales
2,BOB,23,30000,sales

3,Maya, 23,25000, sales
4,Sara,25,40000,sales
5,David, 23,45000,sales
6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales
2,Jaya, 23,20000,admin
3,Maya, 23,25000, sales
4,Alia,25,50000,admin
5,David, 23,45000,sales

6,0mar, 30,30000, admin

And we have loaded these files into Pig, with the schema names emp_sales and
emp_bonus respectively.

emp_sales = LOAD 'hdfs://localhost:9000/pig data/emp_sales.txt' USING
PigStorage(', ')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

99

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

emp_bonus = LOAD 'hdfs://localhost:9000/pig _data/emp_bonus.txt' USING
PigStorage(', ')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

Let us now group the records/tuples of the relations emp_sales and emp_bonus with
the key sno, using the COGROUP operator as shown below.

cogroup_data = COGROUP emp_sales by sno, emp_bonus by sno;

Verify the relation details using the DUMP operator as shown below.

grunt> Dump cogroup_data;
(1,{(1,Robin,22,25000,sales)},{(1,Robin,22,15000,sales)})
(2,{(2,B0B,23,30000,sales)},{(2,Jaya,23,12000,admin)})
(3,{(3,Maya, 23,25000,sales)},{(3,Maya,23,10000,sales)})
(4,{(4,Sara,25,40000,sales)},{(4,Alia, 25,8000,admin)})
(5,{(5,David,23,45000,sales)}, {(5,David, 23,6000,sales)})
(6,{(6,Maggy,22,35000,sales)},{(6,0mar,30,3000,admin)})

Subtracting One Schema from the Other

Let us now subtract the tuples of emp_bonus schema from emp_sales schema. The
resulting schema holds the tuples of emp_sales that are not there in emp_bonus.

sub_data = FOREACH cogroup_data GENERATE SUBTRACT(emp_sales, emp_bonus);

Verification

Verify the schema sub_data using the DUMP operator as shown below. The emp_sales
schema holds the tuples that are not there in the schema emp_bonus.

Dump sub_data;

€8))
({(2,BOB,23,30000,sales)})

€8]
({(4,Sara, 25,40000,sales)})

M
({(6,Maggy,22,35000,sales)})

In the same way, let us subtract the emp_sales schema from emp_bonus schema as
shown below.

sub_data = FOREACH cogroup_data GENERATE SUBTRACT(emp_bonus, emp_sales);

100

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Verify the contents of the sub_data schema using the Dump operator as shown below.

{H

({(2,Jaya, 23,20000,admin) })
{H
({(4,Alia, 25,50000,admin) })

M
({(6,0mar,30,30000,admin)})000,admin)})

IsEmpty

The isEmpty() function of Pig Latin is used to check if a bag or map is empty.

Syntax

Given below is the syntax of the IsEmpty() function.

IsEmpty(expression)

Example

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS
directory /pig_data/ as shown below. The emp_sales.txt contains the details of the
employees of the sales department and the emp_bonus.txt contains the employee details
who got bonus.

emp_sales.txt

1,Robin,22,25000,sales
2,B0B,23,30000,sales

3,Maya, 23,25000, sales
4,Sara,25,40000,sales
5,David,23,45000,sales
6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales
2,Jaya, 23,20000,admin
3,Maya, 23,25000, sales
4,Alia,25,50000,admin
5,David, 23,45000,sales
6,0mar, 30,30000,admin

101

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And we have loaded these files into Pig, with the schema names emp_sales and
emp_bonus respectively, as shown below.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING
PigStorage(', ')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING
PigStorage(', ')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

Let us now group the records/tuples of the relations emp_sales and emp_bonus with
the key age, using the cogroup operator as shown below.

cogroup_data = COGROUP emp_sales by sno, emp_bonus by age;

Verify the relation cogroup_data using the DUMP operator as shown below.

grunt> Dump cogroup_data;

(22,{(6,Maggy,22,35000,sales), (1,Robin,22,25000,sales)},
{(1,Robin,22,25000,sales)})
(23,{(5,David, 23,45000,sales), (3,Maya, 23,25000,sales), (2,B0B,23,30000,sales)},

{(5,David,23,45000,sales), (3,Maya,23,25000,sales), (2, Jaya, 23,20000,admin)})

(25,{(4,Sara, 25,40000,sales)},{(4,Alia, 25,50000,admin) })
(30,{},{(6,0mar,30,30000,admin) })

The COGROUP operator groups the tuples from each schema according to age. Each group
depicts a particular age value.

For example, if we consider the 1st tuple of the result, it is grouped by age 22. And it
contains two bags, the first bag holds all the tuples from the first schema (student_details
in this case) having age 22, and the second bag contains all the tuples from the second
schema (employee_details in this case) having age 22. In case a schema doesn’t have
tuples having the age value 22, it returns an empty bag.

Getting the Groups having Empty Bags

Let’s list such empty bags from the emp_sales schema in the group using the IsEmpty()
function.

isempty _data = filter cogroup_data by IsEmpty(emp_sales);

102

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Verification

Verify the schema isempty_data using the DUMP operator as shown below. The
emp_sales schema holds the tuples that are not there in the schema emp_bonus.

Dump isempty_data;

(30,{},{(6,0mar,30,30000,admin) })

Pluck Tuple

After performing operations like join to differentiate the columns of the two schemas, we
use the function PluckTuple(). To use this function, first of all, we have to define a string
Prefix and we have to filter for the columns in a relation that begin with that prefix.

Syntax

Given below is the syntax of the PluckTuple() function.

DEFINE pluck PluckTuple(expressionl)
DEFINE pluck PluckTuple(expressionl,expression3)

pluck(expression2)

Example

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS
directory /pig_data/. The emp_sales.txt contains the details of the employees of the
sales department and the emp_bonus.txt contains the employee details who got bonus.

emp_sales.txt

1,Robin,22,25000,sales
2,B0B,23,30000,sales

3,Maya, 23,25000, sales
4,Sara,25,40000,sales
5,David,23,45000,sales

6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales
2,Jaya, 23,20000,admin
3,Maya, 23,25000, sales
4,Alia,25,50000,admin
5,David, 23,45000,sales

103

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

6,0mar, 30, 30000, admin

And we have loaded these files into Pig, with the schema names emp_sales and
emp_bonus respectively.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING
PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING
PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,
dept:chararray);

Join these two schemas using the join operator as shown below.

join_data = join emp_sales by sno, emp_bonus by sno;

Verify the schema join_data using the Dump operator.

grunt> Dump join_data;

(1,Robin,22,25000,sales,1,Robin,22,25000,sales)
(2,B0OB,23,30000,sales,2,Jaya,23,20000,admin)
(3,Maya, 23,25000,sales,3,Maya,23,25000,sales)
(4,Sara,25,40000,sales,4,Alia,25,50000,admin)
(5,David, 23,45000,sales,5,David, 23,45000,sales)
(6,Maggy,22,35000,sales,6,0mar,30,30000,admin)

Using PluckTuple() Function

Now, define the required expression by which you want to differentiate the columns using
PluckTupe() function.

DEFINE pluck PluckTuple('a::');

Filter the columns in the join_data relation as shown below.

data = foreach test generate FLATTEN(pluck(*));

Verify the schema of the join_data schema using the describe operator.

Describe test;

test: {emp_sales::sno: int,emp_sales::name: chararray,emp_sales::age:
int,emp_sales::salary: int,emp_sales::dept: chararray,emp_bonus::sno:
int,emp_bonus::name: chararray,emp_bonus::age: int,emp_bonus::salary:
int,emp_bonus::dept: chararray}

Since we have defined the expression as “a::"”, the columns of the emp_sales schema
are plucked as emp_sales::column name and the columns of the emp_bonus schema
are plucked as emp_bonus::column name

104

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Size ()

The size() function of Pig Latin is used to compute the number of elements based on any
Pig data type.

Syntax

Given below is the syntax of the size() function.

SIZE(expression)

The return values vary according to the data types in Apache Pig.

Data type Value

int, long, float, double | For all these types, the size function returns 1.

Char array For a char array, the size() function returns the number of
characters in the array.

Byte array For a bytearray, the size() function returns the number of
bytes in the array.

Tuple For a tuple, the size() function returns number of fields in the
tuple.
Bag For a bag, the size() function returns number of tuples in the
bag.
Map For a map, the size() function returns the number of

key/value pairs in the map.

Example

Assume that we have a file named employee.txt in the HDFS directory /pig_data/ as
shown below.

employee.txt

1,John, 2007-01-24, 250
2,Ram,2007-05-27,220
3,Jack,2007-05-06,170
3,Jack,2007-04-06,100
4,3ill,2007-04-06,220
5,Zara,2007-06-06,300
5,Zara,2007-02-06,350

105

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And we have loaded this file into Pig with the schema name employee_data as shown
below.

grunt> employee_data = LOAD 'hdfs://localhost:9000/pig_data/ employee.txt’
USING PigStorage(',')as (id:int, name:chararray, workdate:chararray,
daily typing pages:int);

Calculating the Size of the Type

To calculate the size of the type of a particular column, we can use the size() function.
Let’s calculate the size of the nhame type as shown below.

grunt> size = FOREACH employee_data GENERATE SIZE(name);

Verification

Verify the relation size using the DUMP operator as shown below.

grunt> Dump size;

Output

It will produce the following output, displaying the contents of the relation size as follows.
In the example, we have calculated the size of the name column. Since it is of varchar
type, the size function gives you the number of characters in the name of each employee.

(4)
(3)
(4)
(4)
(4)
(4)
(4)

BagToString ()

The Pig Latin BagToString() function is used to concatenate the elements of a bag into
a string. While concatenating, we can place a delimiter between these values (optional).

Generally bags are disordered and we can order them by using the ORDER BY operator.

Syntax
Given below is the syntax of the BagToString() function.

BagToString(vals:bag [, delimiter:chararray])

Example

Assume that we have a file named dateofbirth.txt in the HDFS directory /pig_data/ as
shown below. This file contains the date-of-births.

106

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

employee.txt

22,3,1990
23,11,1989
1,3,1998
2,6,1980
26,9,1989

And we have loaded this file into Pig with the schema name dob as shown below.

grunt> dob = LOAD 'hdfs://localhost:9000/pig_data/dob.txt' USING
PigStorage(',')as (day:int, month:int, year:int);

Converting Bag to String

Using the bagtostring() function, we can convert the data in the bag to string. Let us
group the dob schema. The group operation will produce a bag containing all the tuples
of the schema.

Group the schema dob using the Group All operator, and store the result in the schema
named group_dob as shown below.

grunt> group_dob = Group dob all;

It will produce a schema as shown below.

grunt> Dump group_dob;

(all,{(26,9,1989),(2,6,1980),(1,3,1998), (23,11,1989), (22,3,1990)})

Here, we can observe a bag having all the date-of-births as tuples of it. Now, let’s convert
the bag to string using the function BagToString().

grunt> dob_string = foreach group_dob Generate BagToString(dob);

Verification

Verify the relation student_workpages_sum using the DUMP operator as shown below.

grunt> Dump dob_string;

Output

It will produce the following output, displaying the contents of the relation
student_workpages_sum.

(26_9 1989 2 6 1980 1 3 1998 23 11 1989 22 3 1990)

107

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Concat ()

The CONCAT() function of Pig Latin is used to concatenate two or more expressions of
the same type.

Syntax

CONCAT (expression, expression, [...expression])

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad, 89
002,siddarth,Battacharya,22,9848022338,Kolkata, 78
003,Rajesh,Khanna, 22,9848022339,Delhi, 90
004,Preethi,Agarwal,21,9848022330,Pune, 93

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar, 75
006,Archana,Mishra, 23,9848022335,Chennai, 87
007,Komal,Nayak, 24,9848022334,trivendram, 83
008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig _data/student_data.txt'
USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,
age:int, phone:chararray, city:chararray, gpa:int);

Concatenating Two Strings

We can use the concat() function to concatenate two or more expressions. First of all,
verify the contents of the student_details schema using the Dump operator as shown
below.

grunt> Dump student_details;

1,Rajiv,Reddy,21,9848022337,Hyderabad, 89)
2,siddarth,Battacharya,22,9848022338,Kolkata,78)
3,Rajesh,Khanna, 22,9848022339,Delhi, 90)
4,Preethi,Agarwal,21,9848022330,Pune,93)

5, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75)
6,Archana,Mishra,23,9848022335,Chennai,87)
7,Komal,Nayak,24,9848022334,trivendram,83)
8,Bharathi,Nambiayar,24,9848022333,Chennai,72)

AN AN AN AN AN AN A

108

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And, verify the schema using describe operator as shown below.

grunt> Describe student_details;

student_details: {id: int, firstname: chararray, lastname: chararray, age: int,
phone: chararray, city: chararray, gpa: int}

In the above schema, you can observe that the name of the student is represented using
two chararray values namely firstname and lastname. Let us concatinate these two
values using the CONCAT() function.

grunt> student_name_concat = foreach student_group_all Generate CONCAT
(firstname, lastname);

Verification

Verify the relation student_name_concat using the DUMP operator as shown below.

grunt> Dump student_name_concat;

Output

It will produce the following output, displaying the contents of the relation
student_name_concat.

(RajivReddy)
(siddarthBattacharya)
(RajeshKhanna)
(PreethiAgarwal)
(TrupthiMohanthy)
(ArchanaMishra)
(KomalNayak)

(BharathiNambiayar)

We can also use an optional delimiter between the two expressions as shown below.

CONCAT(firstname, ',lastname);

Now, let us concatenate the first name and last name of the student records in the
student_details schema by placing *_’" between them as shown below.

grunt> student_name_concat = foreach student_gpa GENERATE CONCAT(firstname,
' ',lastname);

grunt> Dump student_name_concat;

109

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Verification

Verify the relation student_name_concat using the DUMP operator as shown below.

grunt> Dump student_name_concat;

Output

It will produce the following output, displaying the contents of the relation
student_name_concat as follows.

(Rajiv_Reddy)
(siddarth_Battacharya)
(Rajesh_Khanna)
(Preethi_Agarwal)
(Trupthi_Mohanthy)
(Archana_Mishra)
(Komal_Nayak)
(Bharathi_Nambiayar)

Tokenize ()

The Tokenize function of Pig Latin is used to split a string (which contains a group of
words) in a single tuple and return a bag which contains the output of the split operation.

Syntax

Given below is the syntax of the Tokenize operation.

TOKENIZE(expression [, 'field_delimiter'])

As a delimeter to the tokenize function, we can pass space [], double quote [" "], coma
[,], parenthesis [()], star [* 1.

Example

Assume that we have a file named student_details.txt in the HDFS directory
/pig_data/ as shown below.

student_details.txt

001,Rajiv_Reddy, 21,Hyderabad
002,siddarth_Battacharya,22,Kolkata
003,Rajesh_Khanna,22,Delhi
004,Preethi_Agarwal,21,Pune

005, Trupthi_Mohanthy, 23,Bhuwaneshwar
006,Archana_Mishra,23 ,Chennai
007,Komal_Nayak, 24,trivendram
008,Bharathi_Nambiayar, 24,Chennai

110

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig data/student_data.txt'
USING PigStorage(',')as (id:int, firstname:chararray, age:int,
city:chararray);

Tokenizing a String

We can use the Tokenize() function to split a string. First of all, verify the contents of
the student_details schema using the Dump operator as shown below.

grunt> Dump student_details;

1,Rajiv,Reddy,21,9848022337,Hyderabad, 89)
2,siddarth,Battacharya,22,9848022338,Kolkata,78)
3,Rajesh,Khanna, 22,9848022339,Delhi, 90)
4,Preethi,Agarwal,21,9848022330,Pune,93)

5, Trupthi,Mohanthy, 23,9848022336,Bhuwaneshwar,75)
6,Archana,Mishra,23,9848022335,Chennai,87)
7,Komal,Nayak, 24,9848022334,trivendram, 83)
8,Bharathi,Nambiayar,24,9848022333,Chennai, 72)

AN AN AN AN A AN AN A

And, verify the schema using describe operator as shown below.

grunt> Describe student_details;

student_details: {id: int, firstname: chararray, lastname: chararray, age: int,
phone: chararray, city: chararray, gpa: int}

In the above schema, you can observe that the name of the student is represented using
two chararray values namely firstname and lastname. Let us concatinate these two
values using the concat() function as shown below.

grunt> student_name_concat = foreach student_group_all Generate CONCAT
(firstname, lastname);

Verification

Verify the relation student_name_concat using the DUMP operator as shown below.

grunt> Dump student_name_concat;

Output

It will produce the following output, displaying the contents of the relation
student_name_concat as follows.

(RajivReddy)
(siddarthBattacharya)

(RajeshKhanna)

111

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

(PreethiAgarwal)
(TrupthiMohanthy)
(ArchanaMishra)
(KomalNayak)

(BharathiNambiayar)

112

I@j tutorialspoint

25. Load and Store Functions

The load/store functions in Apache Pig are used to determine how the data goes ad comes
out of Pig. These functions are used with the load and store operators. Given below is
the list of load and store functions available in Pig.

Function Description
PigStorage To load and store structured files.
TextLoader To load unstructured data into Pig.
BinStorage To load and store data into Pig using machine readable

format.

Handling Compression | In Pig Latin, we can load and store compressed data.

PigStorage ()

The PigStorage function loads and stores data as structured text files. It takes a delimiter
using which each entity of a tuple is separated as a parameter. By default, it takes *\t’ as
a parameter.

Syntax

Given below is the syntax of the PigStorage() function.

PigStorage(field_delimiter)

Example

Let us suppose we have a file named student_data.txt in the HDFS directory named
/data/ with the following content.

001,Rajiv,Reddy, 9848022337 ,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna, 9848022339,Delhi

004,Preethi,Agarwal, 9848022330, Pune
005, Trupthi,Mohanthy, 9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

113

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

We can load the data using the PigStorage function as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING
PigStorage(', ')as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

In the above example, we have seen that we have used comma (%,”) delimiter. Therefore,
we have separated the values of a record using (,).

In the same way, we can use the PigStorage() function to store the data in to HDFS
directory as shown below.

STORE student INTO ' hdfs://localhost:9000/pig Output/ ' USING PigStorage
(5"

This will store the data into the given directory. You can verify the data as shown below.

Verification

You can verify the stored data as shown below. First of all, list out the files in the directory
named pig_output using Is command as shown below.

hdfs dfs -1s 'hdfs://localhost:9000/pig Output/'
Found 2 items

rw-r--r- 1 Hadoop supergroup © 2015-10-05 13:03
hdfs://localhost:9000/pig Output/_SUCCESS

rw-r--r- 1 Hadoop supergroup 224 2015-10-05 13:03
hdfs://localhost:9000/pig Output/part-m-00000

You can observe that two files were created after executing the Store statement.

Then, using the cat command, list the contents of the file named part-m-00000 as shown
below.

$ hdfs dfs -cat 'hdfs://localhost:9000/pig_Output/part-m-00000'

1,Rajiv,Reddy,9848022337,Hyderabad

2,siddarth,Battacharya,9848022338,Kolkata

3,Rajesh,Khanna, 9848022339,Delhi

4,Preethi,Agarwal, 9848022330, Pune

5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar 6,Archana,Mishra,9848022335,Chennai

TextLoader ()

The Pig Latin function TextLoader() is a Load function which is used to load unstructured
data in UTF-8 format.

114

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax

Given below is the syntax of TextLoader() function.

TextLoader()

Example

Let us assume there is a file with named stu_data.txt in the HDFS directory named
/data/ as shown below.

001,Rajiv_Reddy, 21,Hyderabad
002,siddarth_Battacharya,22,Kolkata
003,Rajesh_Khanna,22,Delhi
004,Preethi_Agarwal,21,Pune

005, Trupthi_Mohanthy, 23, Bhuwaneshwar
006,Archana_Mishra,23,Chennai
007,Komal_Nayak, 24,trivendram
008,Bharathi_Nambiayar,24,Chennai

Now let us load the above file using the TextLoader() function.

grunt> details = LOAD 'hdfs://localhost:9000/pig_data/stu_data.txt' USING
TextLoader();

You can verify the loaded data using the Dump operator.

grunt> dump;

(001,Rajiv_Reddy,21,Hyderabad)
(002,siddarth_Battacharya,22,Kolkata)
(003,Rajesh_Khanna,22,Delhi)
(004,Preethi_Agarwal,21,Pune)

(005, Trupthi_Mohanthy, 23, Bhuwaneshwar)
(006,Archana_Mishra,23,Chennai)
(007,Komal_Nayak,24,trivendram)
(008,Bharathi_Nambiayar,24,Chennai)

BinStorage ()

The BinStorage() function is used to load and store the data into Pig using machine
readable format. BinStorge() in Pig is generally used to store temporary data generated
between the MapReduce jobs. It supports multiple locations as input.

115

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax

Given below is the syntax of the BinStorage() function.

BinStorage();

Example

Assume that we have a file named stu_data.txt in the HDFS directory /pig_data/ as
shown below.

Stu_data.txt

001,Rajiv_Reddy, 21,Hyderabad
002,siddarth_Battacharya,22,Kolkata
003,Rajesh_Khanna,22,Delhi
004,Preethi_Agarwal,21,Pune

005, Trupthi_Mohanthy, 23, Bhuwaneshwar
006,Archana_Mishra,23,Chennai
007,Komal_Nayak, 24,trivendram
008,Bharathi_Nambiayar,24,Chennai

Let us load this data into Pig into a schema as shown below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/stu_data.txt' USING
PigStorage(', ')as (id:int, firstname:chararray, age:int, city:chararray);

Now, we can store this schema into the HDFS directory named /pig_data/ using the
BinStorage() function.

STORE student_details INTO 'hdfs://localhost:9000/pig_Output/mydata’ USING
BinStorage();

After executing the above statement, the schema is stored in the given HDFS directory.
You can verify it using the HDFS cat command as shown below.

[Hadoop@localhost sbin]$ hdfs dfs -1ls hdfs://localhost:9000/pig Output/mydata/

Found 2 items

-rw-r--r-- 1 Hadoop supergroup 0 2015-10-26 16:58
hdfs://localhost:9000/pig Output/mydata/_SUCCESS

-rw-r--r-- 1 Hadoop supergroup 372 2015-10-26 16:58
hdfs://localhost:9000/pig Output/mydata/part-m-00000

116

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Now, load the data from the file part-m-00000.

result = LOAD 'hdfs://localhost:9000/pig Output/b/part-m-00000' USING
BinStorage();

Verify the contents of the schema as shown below.

Dump result;
(1,Rajiv_Reddy,21,Hyderabad)
(2,siddarth_Battacharya,22,Kolkata)
(3,Rajesh_Khanna,22,Delhi)
(4,Preethi_Agarwal,21,Pune)

(5, Trupthi_Mohanthy, 23,Bhuwaneshwar)
(6,Archana_Mishra,23,Chennai)
(7,Komal_Nayak,24,trivendram)

(8,Bharathi_Nambiayar,24,Chennai)

Handling Compression

We can load/store compressed data in Apache Pig using the functions BinStorage() and
TextLoader().

Example

Assume we have a file named employee.txt.zip in the HDFS directory /pigdata/. Then,
we can load the compressed file into pig as shown below.

Using PigStorage:

grunt > data = LOAD 'hdfs://localhost:9000/pig data/employee.txt.zip' USING
PigStorage(',"');

Using TextLoader:

grunt > data = LOAD 'hdfs://localhost:9000/pig_data/employee.txt.zip' USING
TextLoader;

In the same way, we can store the compressed files into pig as shown below.

Using PigStorage:

grunt> store data INTO 'hdfs://localhost:9000/pig Output/data.bz' USING
PigStorage(',"');

117

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://data.bz/

26. Bag and Tuple Functions

Given below is the list of Bag and Tuple functions.

Function Description

TOBAG To convert two or more expressions into a bag.

TOP To get the top N tuples of a relation.

TOTUPLE To convert one or more expressions into a tuple.

TOMAP To convert the key-value pairs into a Map.

TOBAG ()

The TOBAG() function of Pig Latin converts one or more expressions to individual tuples.
And these tuples are placed in a bag.

Syntax

Given below is the syntax of the TOBAG() function.

TOBAG(expression [, expression ...])

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,
with the following content.

employee_details.txt

001,Robin, 22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'
USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

118

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Let us now convert the id, name, age and city, of each student (record) into a tuple as
shown below.

tobag = FOREACH emp_data GENERATE TOBAG (id,name,age,city);

Verification

You can verify the contents of the tobag schema using the Dump operator as shown
below.

DUMP tobag;

({(1),(Robin), (22), (newyork)})
({(2),(BOB), (23), (Kolkata)})
({(3),(Maya), (23), (Tokyo)})
({(4),(sara), (25),(London)})

({(5), (David), (23), (Bhuwaneshwar)})

({(6),(Maggy), (22), (Chennai)})

TOP ()

The TOP() function of Pig Latin is used to get the top N tuples of a bag. To this function,
as inputs, we have to pass a relation, the number of tuples we want, and the column name
whose values are being compared. This function will return a bag containing the required
columns.

Syntax

Given below is the syntax of the function TOP().

TOP(topN, column,relation)

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,
with the following content.

employee_details.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo

H
H

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

010,Saran, 25, London
011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/ employee_details.txt'
USING PigStorage(',') as (id:int, name:chararray, age:int, city:chararray);

Group the schema emp_data by age, and store it in the schema emp_group.

emp_group = Group emp_data BY age;

Verify the schema emp_group using the Dump operator as shown below.

Dump emp_group;

(22,{(12,Kelly,22,Chennai), (7,Robert,22,newyork), (6,Maggy,22,Chennai), (1,Robin,
22,newyork)})
(23,{(8,Syam,23,Kolkata), (5,David, 23, Bhuwaneshwar), (3,Maya, 23, Tokyo), (2,B0B, 23,
Kolkata)})

(25,{(11,Stacy, 25,Bhuwaneshwar), (10, Saran, 25, London), (9,Mary, 25, Tokyo), (4,Sara,
25,London)})

Now, you can get the top two records of each group arranged in ascending order (based
on id) as shown below.

data_top = FOREACH emp_group {
top = TOP(2, @, emp_data);
GENERATE top;

}

Verification
You can verify the contents of the data_top schema using the Dump operator as shown
below.

Dump data_top;

({(7,Robert,22,newyork), (12,Kelly,22,Chennai)})
({(5,David, 23,Bhuwaneshwar), (8,Syam,23,Kolkata)})
({(10,Saran, 25,London), (11,Stacy, 25,Bhuwaneshwar)})

120

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

TOTUPLE ()
The TOTUPLE() function is used convert one or more expressions to the data type tuple.
Syntax
Given below is the syntax of the TOTUPLE() function.
TOTUPLE (expression [, expression ...])
Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,
with the following content.

employee_details.txt

001,Robin, 22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25, London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'
USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Let us now convert the id, name and age of each student (record) into a tuple.

totuple = FOREACH emp_data GENERATE TOTUPLE (id,name,age);

Verification

You can verify the contents of the totuple schema using the Dump operator as shown
below.

DUMP totuple;

((1,Robin,22))
((2,B0B,23))

((3,Maya, 23))
((4,Sara,25))
((5,Dbavid,23))
((6,Maggy,22))

121

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

TOMAP ()

The TOMAP() function of Pig Latin is used to convert the key-value pairs into a Map.

Syntax
Given below is the syntax of the TOMAP() function.

TOMAP (key-expression, value-expression [, key-expression, value-
expression ...])

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,
with the following content.

employee_details.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'
USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Let us now take the name and age of each record as key-value pairs and convert them
into map as shown below.

tomap = FOREACH emp_data GENERATE TOMAP(name, age);

Verification

You can verify the contents of the tomap schema using the Dump operator as shown
below.

DUMP tomap;

([Robin#22])
([BOB#23])
([Maya#23])
([Sara#25])
([David#23])

([Maggy#22])

122

EIMPLYEAGSGYLEARMING

w \tutorialspoint

27/. String Functions

We have the following String functions in Apache Pig.

Operator Description
ENDSWITH ENDSWITH(string, testAgainst)
To verify whether a given string ends with a particular substring.
STARTSWITH(string, substring)
STARTSWITH Accepts two string parameters and verifies whether the first string
starts with the second.
SUBSTRING(string, startIndex, stopIndex)
SUBSTRING

Returns a substring from a given string.

EqualsIgnoreCase

EqualsIgnoreCase(string1, string2)

To compare two stings ignoring the case.

INDEXOF

INDEXOF(string, ‘character’, startIndex)

Returns the first occurrence of a character in a string, searching
forward from a start index.

LAST_INDEX_OF

LAST_INDEX_OF(expression)

Returns the index of the last occurrence of a character in a string,
searching backward from a start index.

LCFIRST(expression)

LCFIRST
Converts the first character in a string to lower case.
UCFIRST (expression)
UCFIRST
Returns a string with the first character converted to upper case.
UPPER(expression)
UPPER Returns a string converted to upper case.

123

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

LOWER(expression)
LOWER

Converts all characters in a string to lower case.
REPLACE(string, ‘oldChar’, ‘newChar’);

REPLACE
To replace existing characters in a string with new characters.
STRSPLIT(string, regex, limit)

STRSPLIT
To split a string around matches of a given regular expression.
SPLITTOBAG(string, regex, limit)

SPLITTOBAG

Similar to the STRSPLIT() function, it splits the string by given
delimiter and returns the result in a bag.
TRIM(expression)

TRIM .) . - .
Returns a copy of a string with leading and trailing whitespaces
removed.

LTRIM(expression)

LTRIM
Returns a copy of a string with leading whitespaces removed.
RTRIM(expression)

RTRIM
Returns a copy of a string with trailing whitespaces removed.

STARTSWITH ()

This function accepts two string parameters. It verifies whether the first string starts with
the second.

Syntax
Given below is the syntax of the STARTSWITH() function.

STARTSWITH(string, substring)

Example

Assume that there is a file nhamed emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

124

w thtqualspc:mt

AESBYLEARNMNIN

Apache Pig

emp.txt

001,Robin, 22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25, London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25, London
011,Stacy,25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/empl.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Example

Following is an example of the STARTSWITH() function. In this example, we have verified
whether the names of all the employees start with the substring “"Ro"”.

grunt> startswith_data = FOREACH emp_data GENERATE (id,name), STARTSWITH
(name,’Ro’);

The above statement parses the names of all the employees if any of these names starts
with the substring *Ro’. Since the names of the employees ‘Robin’ and ‘Robert’ starts
with the substring ‘Ro’ for these two tuples the STARTSWITH() function returns the
Boolean value ‘true’ and for remaining tuples the value will be ‘false’.

The result of the statement will be stored in the schema named startswith_data. Verify
the content of the schema startswith_data, using the Dump operator as shown below.

Dump startswith_data;

((1,Robin),true)
((2,B0OB),false)
((3,Maya),false)
((4,Sara),false)
((5,Dbavid),false)
((6,maggy),false)
((7,Robert),true)
((8,Syam),false)
((9,Mary),false)
((10,Saran),false)
((11,Stacy),false)
((12,Kelly),false)

125

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

ENDSWITH

This function accepts two String parameters, it is used to verify whether the first string
ends with the second string.

Syntax

ENDSWITH(stringl, string2)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name age and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25,London
011,Stacy,25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/empl.txt' USING
PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of ENDSWITH() function, in this example we are verifying,
weather the name of every employee ends with the character n.

grunt> emp_endswith = FOREACH emp_data GENERATE (id,name),ENDSWITH (name,
nto)s

The above statement verifies weather the name of the employee ends with the letter n.
Since the names of the employees Saran and Robin ends with the letter n for these two
tuples ENDSWITH() function returns the Boolean value ‘true’ and for remaining tuples the
value will be ‘false’.

The result of the statement will be stored in the schema named emp_endswith. Verify
the content of the schema emp_endswith, using the Dump operator as shown below.

grunt> Dump emp_endswith;

126

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

((1,Robin),true)
((2,B0OB),false)
((3,Maya),false)
((4,Sara),false)
((5,David),false)
((6,Maggy),false)
((7,Robert),false)
((8,Syam),false)
((9,Mary),false)
((19,Saran),true)
((11,Stacy),false)
((12,Kelly),false)

SUBSTRING

This function returns a substring from the given string.

Syntax

Given below is the syntax of the SUBSTRING() function. This function accepts three
parameters one is the column name of the string we want. And the other two are the
start and stop indexes of the substring we want from the string.

SUBSTRING(string, startIndex, stopIndex)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name age and city.

emp.txt

001,Robin, 22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo

010, Saran, 25, London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/empl.txt' USING
PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the SUBSTRING() function. In this example we have verified
weather the names of all the employees starts with the substring “"Ro".

127

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

grunt> substring data = FOREACH emp_data GENERATE (id,name), STARTSWITH
(name,’Ro’);

The above statement parses the names of all the employees if any of these names starts
with the substring *Ro’. Since the names of the employees ‘Robin’ and ‘Robert’ starts
with the substring ‘Ro’ for these two tuples the STARTSWITH() function returns the
Boolean value ‘true’ and for remaining tuples the value will be ‘false’.

The result of the statement will be stored in the schema named startswith_data. Verify
the content of the schema startswith_data, using the Dump operator as shown below.

Dump startswith_data;

((1,Robin),true)
((2,B0OB),false)
((3,Maya),false)
((4,Sara),false)
((5,David),false)
((6,maggy),false)
((7,Robert),true)
((8,Syam),false)
((9,Mary), false)
((10,Saran),false)
((11,Stacy),false)
((12,Kelly),false)

EqualsignoreCase

The EqualsIgnoreCase() function is used to compare two strings and verify whether
they are equal. If both are equal this function returns the Boolean value true else it returns
the value false.

Syntax

Given below is the syntax of the function EqualsIgnoreCase()

EqualsIgnoreCase(stringl, string2)

Example

Assume that there is a file hamed emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name age and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25, London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai

128

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
0190,Saran, 25, London
011,Stacy,25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/empl.txt' USING PigStorage(',")as (id:int,
name:chararray, age:int, city:chararray);

Given below is an example of the EqualsIgnoreCase() function. In this example we are
comparing the names of every employees with the string value *‘Robin’.

grunt> equals_data = FOREACH emp_data GENERATE (id,name),
EqualsIgnoreCase(name, 'Robin');

The above statement compares the string “Robin” (case sensitive) with the names of the
employees, if the value matches it returns true else it returns false. In short, this
statement searches the employee record whose name is *‘Robin’

The result of the statement will be stored in the schema named equals_data. Verify the
content of the schema equals_data, using the Dump operator as shown below.

grunt> Dump equals_data;

((1,Robin),true)
((2,B0OB),false)
((3,Maya),false)
((4,Sara),false)
((5,David),false)
((6,Maggy),false)
((7,Robert),false)
((8,Syam),false)
((9,Mary),false)
((10,Saran),false)
((11,Stacy),false)
((12,Kelly),false)

INDEXOF ()

The INDEXOF() function accepts a string value, a character and an index (integer). It
returns the first occurrence of the given character in the string, searching forward from
the given index.

Syntax

Given below is the syntax of the INDEXOF() function.

INDEXOF (string, 'character', startIndex)

129

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25,London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig data/empl.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the INDEXOF() function. In this example, we are finding
the occurrence of the letter “r” in the names of every employee using this function.

grunt> indexof_data = FOREACH emp_data GENERATE (id,name), INDEXOF(name, 'r',0);

The above statement parses the name of each employee and returns the index value at
which the letter ‘r’ occurred for the first time. If the name doesn’t contain the letter ‘r’ it
returns the value -1

The result of the statement will be stored in the schema named indexof_data. Verify the
content of the schema indexof_data, using the Dump operator as shown below.

grunt> Dump indexof_data;

((1,Robin),-1)
((2,B0B),-1)
((3:Maya))'1)
((4,Sara),2)
((5,bavid),-1)
((6,Maggy),-1)
((7,Robert),4)
((8,Syam),-1)
((9,Mary),2)
((10,Saran),2)

130

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

((11:StaCY)J'1)
((12:Ke11y)1'1)

LAST_INDEX_OF ()

The LAST_INDEX_OF() function accepts a string value and a character. It returns the
last occurrence of the given character in the string, searching backward from the end of
the string.

Syntax

Given below is the syntax of the LAST_INDEX_OF() function.

LAST_INDEX_OF(string, 'character')

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25,London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig data/empl.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the LAST_INDEX_OF() function. In this example, we are
going to find the occurrence of the letter “g” from the end, in the names of every
employee.

grunt> last_index_data = FOREACH emp_data GENERATE (id,name),
LAST_INDEX_OF(name, 'g');

The above statement parses the name of each employee from the end and returns the
index value at which the letter g’ occurred for the first time. If the name doesn’t contain
the letter *g’ it returns the value -1

131

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

The result of the statement will be stored in the schema named last_index_data. Verify the
content of the schema last_index_data using the Dump operator as shown below.

grunt> Dump last_index_data;

((1,Robin),-1)
((Z,BOB),-I)
((3:Maya)1'1)
((4,Sara),2)
((5,David),-1)
((6,Maggy),-1)
((7,Robert),4)
((8,Syam),—1)
((9,Mary),2)
((10,Saran),2)
((11,Stacy),—1)
((12,Kelly),-1)

LCFIRST ()

This function is used to covert the first character of the given string into lowercase.

Syntax
Following is the syntax of the LCFIRST() function.

LCFIRST(expression)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin, 22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25, London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo

010, Saran, 25, London
011,Stacy,25,Bhuwaneshwar
012,Kelly,22,Chennai

132

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig data/empl.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the LCFIRST() function. In this example, we have converted
all the first letters of the names of the employees to lowercase.

grunt> Lcfirst_data = FOREACH emp_data GENERATE (id,name), LCFIRST(name);

The result of the statement will be stored in the schema named Lcfirst_data. Verify the
content of the schema Lcfirst_data, using the Dump operator as shown below.

Dump Lcfirst_data;

((1,Robin),robin)
((2,B0OB),bob)
((3,Maya),maya)
((4,Sara),sara)
((5,David),david)
((6,Maggy),maggy)
((7,Robert),robert)
((8,Syam),syam)
((9,Mary),mary)
((10,Saran),saran)
((11,Stacy),stacy)
((12,Kelly), kelly)

UCFIRST ()

This function accepts a string, converts the first letter of it into uppercase, and returns the
result.

Syntax
Here is the syntax of the function UCFIRST() function.

UCFIRST(expression)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London

133

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25, London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig _data/empl.txt’' USING
PigStorage(',"')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the UCFIRST() function. In this example, we are trying to
convert the first letters of the names of the cities, to which the employees belong to, to
uppercase.

grunt> ucfirst_data = FOREACH emp_data GENERATE (id,city), UCFIRST();

The result of the statement will be stored in the schema named ucfirst_data. Verify the
content of the schema ucfirst_data, using the Dump operator as shown below.

In our example, the first letter of the name of the city "newyork” is in lowercase. After
applying UCFIRST() function, it turns into "NEWYORK"

Dump ucfirst_data;

((1,newyork),Newyork)
((2,Kolkata),Kolkata)
((3,Tokyo), Tokyo)
((4,London),London)
((5,Bhuwaneshwar),Bhuwaneshwar)
((6,Chennai),Chennai)
((7,newyork),Newyork)
((8,Kolkata),Kolkata)
((9,Tokyo),Tokyo)
((10,London),London)
((11,Bhuwaneshwar),Bhuwaneshwar)
((12,Chennai),Chennai)

UPPER ()

This function is used to convert all the characters in a string to uppercase.

Syntax
The syntax of the UPPER() function is as follows:

UPPER(expression)

134

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/. This file
contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25,London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig data/empl.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the UPPER() function. In this example, we have converted
the names of all the employees to upper case.

grunt> upper_data = FOREACH emp_data GENERATE (id,name), UPPER(name);

The above statement converts the names of all the employees to uppercase and returns
the result.

The result of the statement will be stored in a schema named upper_data. Verify the content
of the schema upper_data, using the Dump operator as shown below.

Dump upper_data;

((1,Robin),ROBIN)
((2,BOB),BOB)
((3,Maya),MAYA)
((4,Sara),SARA)
((5,David),DAVID)
((6,Maggy) , MAGGY)
((7,Robert),ROBERT)
((8,Syam),SYAM)
((9,Mary),MARY)
((10,Saran),SARAN)
((11,Stacy),STACY)
((12,Kelly),KELLY)

135

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

LOWER ()

This function is used to convert all the characters in a string to lowercase.

Syntax
Following is the syntax of the LOWER() function.

LOWER (expression)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin, 22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25, London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo

010, Saran, 25, London
011,Stacy,25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/empl.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the LOWER() function. In this example, we have converted
the names of all the employees to lowercase.

grunt> lower_data = FOREACH emp_data GENERATE (id,name), LOWER(name);

The above statement converts the names of all the employees to uppercase and returns
the result.

The result of the statement will be stored in the schema named lower_data. Verify the
content of the schema lower_data, using the Dump operator.

Dump upper_data;

((1,Robin),robin)
((2,BOB),bob)
((3,Maya),maya)
((4,Sara),sara)
((5,David),david)

136

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

((6,Maggy) ,maggy)
((7,Robert),robert)
((8,Syam),syam)
((9,Mary),mary)
((19,Saran),saran)
((11,stacy),stacy)
((12,Kelly),kelly)

REPLACE ()

This function is used to replace all the characters in a given string with the new characters.

Syntax

Given below is the syntax of the REPLACE() function. This function accepts three
parameters, namely,

o string: The string that is to be replaced. If we want to replace the string within a
schema, we have to pass the column name the string belongs to.

e regEXP: Here we have to pass the string/regular expression we want to replace.

e newChar: Here we have to pass the new value of the string.

REPLACE(string, 'regExp', 'newChar');

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25,London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig data/empl.txt' USING
PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

137

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Following is an example of the REPLACE() function. In this example, we have replaced
the name of the city Bhubaneshwar with a shorter form Bhuw.

grunt> replace_data = FOREACH emp_data GENERATE
(id,city),REPLACE(city, 'Bhuwaneshwar', 'Bhuw');

The above statement replaces the string 'Bhuwaneshwar' with 'Bhuw' in the column
named city in the emp schema and returns the result. This result is stored in the schema
named replace_data. Verify the content of the schema replace_data using the Dump
operator as shown below.

Dump replace_data;

((1,newyork),newyork)
((2,Kolkata),Kolkata)
((3,Tokyo),Tokyo)
((4,London), London)
((5,Bhuwaneshwar),Bhuw)
((6,Chennai),Chennai)
((7,newyork) , newyork)
((8,Kolkata),Kolkata)
((9,Tokyo),Tokyo)
((10,London), London)
((11,Bhuwaneshwar),Bhuw)
((12,Chennai),Chennai)

STRSPLIT ()

This function is used to split a given string by a given delimiter.

Syntax

The syntax of STRSPLIT() is given below. This function accepts a string that is needed to
be split, a regular expression, and an integer value specifying the limit (the number of
substrings the string should be split). This function parses the string and when it
encounters the given regular expression, it splits the string into n humber of substrings
where n will be the value passed to limit.

STRSPLIT(string, regex, limit)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin_Smith,22,newyork
002,BOB_Wilson,23,Kolkata
003,Maya_Reddy, 23, Tokyo
004,Sara_Jain, 25, London
005,David_Miller,23,Bhuwaneshwar
006,Maggy Moore, 22,Chennai

138

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

007,Robert_Scott,22,newyork
008,Syam_Ketavarapu,23,Kolkata
009,Mary_Carter,25,Tokyo

010, Saran_Naidu, 25, London
011,Stacy_Green, 25,Bhuwaneshwar
012,Kelly Moore,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp.txt' USING
PigStorage(', ')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the STRSPLIT() function. If you observe the emp.txt file, you
can find that, in the name column, we have the names and surnames of the employees
separated by the delemeter ™_".

In this example, we are trying to split the name and surname of the employees using
STRSPLIT() function.

grunt> strsplit_data = FOREACH emp_data GENERATE (id,name), STRSPLIT
(name,'_",2);

The result of the statement will be stored in the schema named strsplit_data. Verify the
content of the schema strsplit_data, using the Dump operator as shown below.

grunt> Dump strsplit_data;

((1,Robin_Smith), (Robin,Smith))
((2,BOB_Wilson), (BOB,Wilson))
((3,Maya_Reddy), (Maya,Reddy))
((4,Sara_Jain), (Sara,Jain))
((5,David_Miller), (David,Miller))
((6,Maggy_Moore), (Maggy,Moore))
((7,Robert_Scott), (Robert,Scott))
((8,Syam_Ketavarapu), (Syam,Ketavarapu))
((9,Mary_Carter), (Mary,Carter))
((10,Saran_Naidu), (Saran,Naidu))
((11,Stacy_Green), (Stacy,Green))
((12,Kelly_Moore), (Kelly,Moore))

STRSPLITTOBAG ()

This function is similar to the STRSPLIT() function. It splits the string by a given delimiter
and returns the result in a bag.

Syntax

The syntax of SPLITTOBAG() is given below. This function accepts a string that is needed
to be split, a regular expression, and an integer value specifying the limit (the number of
substrings the string should be split). This function parses the string and when it
encounters the given regular expression, it splits the sting into n number of substrings
where n will be the value passed to limit.

139

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

STRSPLIT(string, regex, limit)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown
below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin_Smith,22,newyork
002,BOB_Wilson,23,Kolkata

003, Maya_Reddy, 23, Tokyo
004,Sara_Jain, 25, London
005,David_Miller,23,Bhuwaneshwar
006,Maggy Moore,22,Chennai
007,Robert_Scott,22,newyork
008,Syam_Ketavarapu,23,Kolkata
009,Mary_Carter,25,Tokyo

010, Saran_Naidu, 25,London
011,Stacy_Green, 25,Bhuwaneshwar
012,Kelly Moore,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp.txt' USING
PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the STRSPLITTOBAG() function. If you observe the emp.txt
file, you can find that, in the name column, we have name and surname of the
employees separated by the delemeter ™_".

In this example we are trying to split the name and surname of the employee, and get the
result in a bag using STRSPLITTOBAG() function.

grunt> strsplittostring_data = FOREACH emp_data GENERATE (id,name), STRSPLIT
(name, '_',2);

The result of the statement will be stored in the schema named strsplittostring_data.
Verify the content of the schema strsplittostring_data, using the Dump operator as
shown below.

grunt> Dump strsplittostring_data;

((1,Robin_Smith),{(Robin), (Smith)})
((2,BOB_Wilson),{(BOB), (Wilson)})
((3,Maya_Reddy), {(Maya), (Reddy)})
((4,Sara_Jain),{(Sara), (Jain)})
((5,David_Miller),{(David), (Miller)})
((6,Maggy_Moore), {(Maggy), (Moore)})
((7,Robert_Scott),{(Robert), (Scott)})
((8,Syam_Ketavarapu),{(Syam), (Ketavarapu)})
((9,Mary_Carter),{(Mary), (Carter)})

140

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

((10,Saran_Naidu),{(Saran), (Naidu)})
((11,Stacy_Green),{(Stacy), (Green)})
((12,Kelly Moore),{(Kelly), (Moore)})

Trim ()

The TRIM function accepts a string and returns its copy after removing the unwanted
spaces before and after it.

Syntax
Here is the syntax of the TRIM() function.

TRIM(expression)

Example

Assume we have some unwanted spaces before and after the names of the employees in
the records of the emp_data schema.

Dump emp_data;

(1, Robin ,22,newyork)
(2,BOB,23,Kolkata)

(3, Maya ,23,Tokyo)
(4,Sara,25,London)

(5, David ,23,Bhuwaneshwar)
(6,maggy,22,Chennai)
(7,Robert,22,newyork)

(8, Syam ,23,Kolkata)
(9,Mary,25,Tokyo)

(10, Saran ,25,London)

(11, Stacy,25,Bhuwaneshwar)
(12, Kelly ,22,Chennai)

Using the TRIM() function, we can remove these heading and tailing spaces from the
names, as shown below.

grunt> trim_data = FOREACH emp_data GENERATE (id,name),
TRIM(name);

The above statement returns the copy of the names by removing the heading and tailing
spaces from the names of the employees. The result is stored in the schema named
trim_data. Verify the result of the schema trim_data using the Dump operator as shown
below.

grunt> Dump trim_data;

((1, Robin),Robin)
((2,B0B),BOB)

141

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

((3, Maya),Maya)
((4,Sara),Sara)

((5, David),David)
((6,maggy) ,maggy)
((7,Robert),Robert)
((8, Syam),Syam)
((9,Mary),Mary)
((10, Saran),Saran)
((11, stacy),Stacy)
((12, Kelly),Kelly)

LTRIM ()

The function LTRIM() is same as the function TRIM(). It removes the unwanted spaces
from the left side of the given string (heading spaces).

Syntax
Here is the syntax of the LTRIM() function.

LTRIM(expression)

Example

Assume we have some unwanted spaces before and after the names of the employees in
the records of the emp_data schema.

Dump emp_data;

(1, Robin ,22,newyork)

(2, BOB,23,Kolkata)

(3, Maya ,23,Tokyo)

(4, Sara,25,London)

(5, David ,23,Bhuwaneshwar)
(6, maggy,22,Chennai)

(7, Robert,22,newyork)

(8, Syam ,23,Kolkata)

(9, Mary,25,Tokyo)

(10, Saran ,25,London)

(11, Stacy,25,Bhuwaneshwar)
(12, Kelly ,22,Chennai)

Using the LTRIM() function, we can remove the heading spaces from the names as shown
below.

grunt> 1ltrim_data = FOREACH emp_data GENERATE (id,name),
LTRIM(name);

The above statement returns the copy of the names by removing the heading spaces from
the names of the employees. The result is stored in the schema named Itrim_data. Verify
the result of the schema Itrim_data using the Dump operator as shown below.

142

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

grunt> Dump ltrim_data;

((1, Robin),Robin)
((2,B0B),BOB)

((3, Maya),Maya)
((4,Sara),Sara)

((5, David),David)
((6,maggy),maggy)
((7,Robert),Robert)
((8, Syam),Syam)
((9,Mary),Mary)
((10, Saran),Saran)
((11, stacy),Stacy)
((12, Kelly),Kelly)

RTRIM

The function RTRIM() is same as the function TRIM(). It removes the unwanted spaces

from the right side of a given string (tailing spaces).

Syntax

The syntax of the RTRIM() function is as follows -

RTRIM(expression)

Example

Assume we have some unwanted spaces before and after the names of the employees in

the records of the emp_data schema as shown below.

Dump emp_data;

(1, Robin ,22,newyork)
(2, BOB,23,Kolkata)
(3, Maya ,23,Tokyo)
(4, Sara,25,London)

(6, maggy,22,Chennai)
(7, Robert,22,newyork)
(8, Syam ,23,Kolkata)
(9, Mary,25,Tokyo)

(10, Saran ,25,London)

(12, Kelly ,22,Chennai)

(5, David ,23,Bhuwaneshwar)

(11, Stacy,25,Bhuwaneshwar)

tutorialspoint

|!ou"
A EIMPLYEAEGYLEARMNIN

143

Apache Pig

Using the RTRIM() function, we can remove the heading spaces from the names as shown
below.

grunt> rtrim_data = FOREACH emp_data GENERATE (id,name),
RTRIM(name);

The above statement returns the copy of the names by removing the tailing spaces from
the names of the employees. The result is stored in the schema named rtrim_data. Verify
the result of the schema rtrim_data using the Dump operator as shown below.

grunt> Dump rtrim_data;

((1, Robin), Robin)
((2,BOB),BOB)

((3, Maya), Maya)
((4,Sara),Sara)

((5, David), David)
((6,maggy),maggy)
((7,Robert),Robert)
((8, Syam), Syam)
((9,Mary),Mary)

((10, Saran), Saran)
((11, Stacy), Stacy)
((12, Kelly), Kelly)

144

EIMPLYEAGSGYLEARMING

w \tutorialspoint

28. date-time Functions

Apache Pig provides the following Date and Time functions -

Operator Description

ToDate(milliseconds),
ToDate(iosstring),
ToDate(userstring, format),

ToDate ToDate(userstring, format, timezone)

This function returns a date-time object according to the given
parameters.

CurrentTime()
CurrentTime

returns the date-time object of the current time.

GetDay(datetime)
GetDay

Returns the day of a month from the date-time object.

GetHour(datetime)
GetHour

Returns the hour of a day from the date-time object.

GetMilliSecond(datetime)
GetMilliSecond
Returns the millisecond of a second from the date-time object.

GetMinute(datetime)

GetMinute
Returns the minute of an hour from the date-time object.
GetMonth(datetime)

GetMonth
Returns the month of a year from the date-time object.
GetSecond(datetime)

GetSecond
Returns the second of a minute from the date-time object.
GetWeek(datetime)

GetWeek Returns the week of a year from the date-time object.

145

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

GetWeekYear(datetime)

GetWeekYear
Returns the week year from the date-time object.
GetYear(datetime)

GetYear
Returns the year from the date-time object.
ToString(datetime [, format string])

ToString
Converts the date-time object to the ISO or the customized string.
AddDuration(datetime, duration)

AddDuration

Returns the result of a date-time object along with the duration
object.

SubtractDuration

SubtractDuration(datetime, duration)

Subtracts the Duration object from the Date-Time object and
returns the result.

DaysBetween

DaysBetween(datetimel, datetime2)

Returns the number of days between the two date-time objects.

HoursBetween

HoursBetween(datetimel, datetime2)

Returns the number of hours between two date-time objects.

MilliSecondsBetween

MilliSecondsBetween(datetimel, datetime2)

Returns the number of milliseconds between two date-time
objects.

MinutesBetween

MinutesBetween(datetimel, datetime2)

Returns the number of minutes between two date-time objects.

MonthsBetween

MonthsBetween(datetimel, datetime?2)

Returns the number of months between two date-time objects.

SecondsBetween

SecondsBetween(datetimel, datetime?2)

Returns the number of seconds between two date-time objects.

ToMilliSeconds

ToMilliSeconds(datetime)

146

MPLYEAEYLEARMING

w ' tutorialspoint

Apache Pig

Calculates the number of milliseconds elapsed since January 1,
1970, 00:00:00.000 and returns the result.

WeeksBetween(datetimel, datetime2)

WeeksBetween . .
Returns the number of weeks between two date-time objects.
YearsBetween(datetimel, datetime?2)

YearsBetween))
Returns the number of years between two date-time objects.

ToDate ()

This function is used to generate a DateTime object according to the given parameters.

Syntax

The syntax of ToDate() function can be any of the following -

ToDate(milliseconds)

ToDate(iosstring)

ToDate(userstring, format)

ToDate(userstring, format, timezone)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file
contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt’ USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the ToDate() function. Here we are converting the DateTime
object corresponding to the date-of-birth of every employee.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime >);

147

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

The result (DateTime object of every employee) of the statement will be stored in the
schema named todate_data. Verify the content of this schema using the Dump operator
as shown below.

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)
(1980-06-20T10:22:00.000+05:30)
(1990-12-19T03:11:44.000+05:30)

GetDay ()

This function accepts a date-time object as a parameter and returns the current day of the
given date-time object.

Syntax
Here is the syntax of the GetDay() function.

GetDay(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetDay() function. The GetDay() function will retrive the
day from the given Date-Time object. Therefore, first of all, let us generate the date-time
objects of all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T03:11:44.000+05:30)

148

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Now, let us get the day from the date-of-birth using GetDay() function and store it in the
schema named getday_data.

getday_data = foreach todate_data generate(date_time), GetDay(date_time);

Verify the contents of the getday_data schema using the Dump operator.

Dump getday_data;

(1989-09-26T09:00:00.000+05:30, 26)
(1980-06-20T10:22:00.000+05:30,20)
(1990-12-19T03:11:44.000+05:30,19)

GetHour ()

This function accepts a date-time object as parameter and returns the current hour of the
current day of a given date-time object.

Syntax

Here is the syntax of the GetHour() function.

GetHour(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(', ')as (id:int,date:chararray);

Following is an example of the GetHour() function. The GetHour() function will retrive
the hour of the day from the given Date-Time object. Therefore, first of all, let's generate
the Date-Time objects of all employees using todate() function.

grunt todate data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

149

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

(1980-06-20T10:22:00.000+05:30)
(1990-12-19703:11:44.000+05:30)

Let us now get the hour from the birth time of each employee using GetDay() function
and store it in the schema named gethour_data.

gethour_data = foreach todate_data generate (date_time), GetHour(date_time);

Now verify the contents of the getday_data schema using the Dump operator as shown
below.

Dump gethour_data;

(1989-09-26T09:00:00.000+05:30,9)
(1980-06-20T10:22:00.000+05:30,10)
(1990-12-19T03:11:44.000+05:30, 3)

GetMinute ()

This function accepts a date-time object as parameter and returns the minute of the
current hour of a given date-time object.

Syntax

Here is the syntax of the GetMinute() function.

GetMinute(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(', ')as (id:int,date:chararray);

Following is an example of the GetMinute() function. The GetMinute() function will retrive
the minute of the hour from the given date-time object. Therefore, first of all, let's
generate the date-time objects of all employees using todate() function.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

150

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)
(1980-06-20T10:22:00.000+05:30)
(1990-12-19703:11:44.000+05:30)

Now, let’s get the minutes from the birth time of each employee using GetMinute() and
store it in the schema named getminute_data as shown below.

getminute_data = foreach todate_data generate (date_time),
GetMinute(date_time);

Now verify the contents of the getminute_data schema using the Dump operator as
shown below.

Dump getminute_data;

(1989-09-26T09:00:00.000+05:30,0)
(1980-06-20T10:22:00.000+05:30,22)
(1990-12-19T03:11:44.000+05:30,11)

GetSecond ()

This function accepts a date-time object as a parameter and returns the seconds of the
current minute of a given date-time object.

Syntax

Here is the syntax of the GetSecond() function.

GetSecond(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

151

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Following is an example of the GetSecond() function. It retrives the seconds of a minute
from the given date-time object. Therefore, let's generate the date-time objects of all
employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T703:11:44.000+05:30)

Let us now get the seconds from the birth time of each employee using GetSecond()
function and store it in the schema named getsecond_data as shown below.

getsecond_data = foreach todate_data generate (date_time),
GetSecond(date_time);

Now verify the contents of the getsecond_data schema using the Dump operator as
shown below.

Dump getsecond_data;

(1989-09-26T09:00:00.000+05:30,0)
(1980-06-20T10:22:00.000+05:30,0)
(1990-12-19T03:11:44.000+05:30,44)

GetMilliSecond ()

This function accepts a date-time object as a parameter and returns the milliseconds of
the current second of a given date-time object.

Syntax
Here is the syntax of the GetMilliSecond() function.

GetMilliSecond(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, it has person id,
date and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

152

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(', ')as (id:int,date:chararray);

Following is an example of the GetMilliSecond() function. The GetMilliSecond() function
will retrive the milliseconds of the current second from the given date-time object.
Therefore, First of all let's generate the date-time objects of all employees using
todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T703:11:44.000+05:30)

Now, let’s get the seconds from the birth time of each employee using
GetMilliSecond() function and store it in the schema named getmillisecond_data as
shown below.

getmillisecond _data = foreach todate_data generate (date_time),
GetMilliSecond(date_time);

Now verify the contents of the getmillisecond_data schema using Dump operator as
shown below.

Dump getmillisecond_data;

(1989-09-26T09:00:00.000+05:30,0)
(1980-06-20T10:22:00.000+05:30,0)
(1990-12-19T03:11:44.000+05:30,0)

GetYear

This function accepts a date-time object as parameter and returns the current year from
the given date-time object.

Syntax

Here is the syntax of the GetYear() function.

GetYear(datetime)

153

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, it has person id,
date and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetYear() function. It will retrive the current year from
the given date-time object. Therefore, First of all let’s generate the date-time objects of
all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T03:11:44.000+05:30)

Let us now get the year from the date-of-birth of each employee using the GetYear()
function and store it in the schema named getyear_data.

getyear_data = foreach todate_data generate (date_time), GetYear(date_time);

Now verify the contents of the getyear_data schema using Dump operator as shown
below.

Dump getyear_data;

(1989-09-26T09:00:00.000+05:30,1989)
(1980-06-20T10:22:00.000+05:30,1980)
(1990-12-19T03:11:44.000+05:30,1990)

GetMonth ()

This function accepts a date-time object as a parameter and returns the current month of
the current year from the given date-time object.

154

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax
Here is the syntax of the GetMonth() function.

GetMonth(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, id, date and time.

date.txt

001,1989/09/26 0©9:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetMonth() function. It will retrive the current month from
the given date-time object. Therefore, First of all let’s generate the date-time objects of
all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T703:11:44.000+05:30)

Let us now get the month from the date-of-birth of each employee using GetMonth()
function and store it in the schema named getmonth_data.

getmonth_data = foreach todate_data generate (date_time), GetMonth(date_time);

Now verify the contents of the getmonth_data schema using Dump operator as shown
below.

Dump getmonth_data;

(1989-09-26T09:00:00.000+05:30,9)
(1980-06-20T10:22:00.000+05:30,6)
(1990-12-19T03:11:44.000+05:30,12)

155

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

GetWeek ()

This function accepts a date-time object as parameter and returns the current week of
the current month from the given date-time object.

Syntax
Here is the syntax of the GetWeek() function.

GetWeek(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, it has person id,
date and time.

date.txt

001,1989/09/26 ©9:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetWeek() function. It will retrive the current week from
the given date-time object. Therefore, let us generate the date-time objects of all
employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T03:11:44.000+05:30)

Let us now get the month from the date-of-birth of each employee using GetWeek() and
store it in the schema named getweek_data.

getweek_data = foreach todate_data generate (date_time), GetWeek(date_time);

156

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Now, verify the contents of the getweek_data schema using the Dump operator.

Dump getWeek_data;

(1989-09-26T09:00:00.000+05:30, 39)
(1980-06-20T10:22:00.000+05:30, 25)
(1990-12-19T03:11:44.000+05:30,51)

GetWeekYear ()

This function accepts a date-time object as a parameter and returns the current week year
from the given date-time object.

Syntax
Here is the syntax of the GetWeekYear() function.

GetWeekYear(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown
below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetWeekYear() function. It will retrive the current week
year from the given date-time object. Therefore, let us generate the date-time objects of
all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T03:11:44.000+05:30)

157

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Let us get the month from the date-of-birth of each employee using GetWeekYear()
function and store it in the schema named getweekyear_data as shown below.

getweekyear_data = foreach todate_data generate (date_time),
GetWeekYear(date_time);

Now verify the contents of the getweekyear_data schema using the Dump operator.

Dump getweekyear_data;

(1989-09-26T09:00:00.000+05:30,1989)
(1980-06-20T10:22:00.000+05:30,1980)
(1990-12-19T703:11:44.000+05:30,1990)

CurrentTime ()

This function is used to generate DateTime object of the current time.

Syntax

Here is the syntax of CurrentTime() function.

CurrentTime()

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file
contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(', ')as (id:int,date:chararray);

Following is an example of the CurrentTime() function. Here we are generating the
current time.

grunt> currenttime_data = foreach todate_data generate CurrentTime();

The result of the statement will be stored in the schema named currenttime_data. Verify
the content of this schema using the Dump operator.

Dump currenttime_data;

(2015-11-06T11:31:02.013+05:30)

158

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

(2015-11-06T11:31:02.013+05:30)
(2015-11-06T11:31:02.013+05:30)

ToString ()

This method is used to convert the date-time object to a customized string.

Syntax

Here is the syntax of the ToString() function.

ToString(datetime [, format string])

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file
contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 0©9:00:00
002,1980/06/20 10:22:00
003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int,date:chararray);

Following is an example of the ToString() function. The ToString() function converts the
given date-time objects in to String format. Therefore, let us generate the date-time
objects of all employees using todate() function.

grunt todate_data = foreach raw_date generate ToDate(date, 'yyyy/MM/dd
HH:mm:ss') as (date_time:DateTime);

Dump todate_data;
(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)
(1990-12-19T703:11:44.000+05:30)

Let us get the string format of the date-time objects of all the employees using ToString()
method and store it in a schema named tostring_data.

tostring_data = foreach todate_data generate (date_time),
ToString(date_time,Text);

159

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Verify the tostring_data schema using the Dump command as shown below.

Dump tostring_data;

(1989-09-26T09:00:00.000+05:30,39)
(1980-06-20T10:22:00.000+05:30, 25)
(1990-12-19T03:11:44.000+05:30,51)

DaysBetween ()

This function accepts two date-time objects and calculates the number of days between
the two given date-time objects.

Syntax

Here is the syntax of the DaysBetween() function.

DaysBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth, and date-of-join.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 03:11:44,25/10/2012 ©9:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/datel.txt’' USING
PigStorage(', ')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of days between date-of-birth and date-of-join of the
employees using the DaysBetween() function.

daysbetween_data = foreach doj_dob generate DaysBetween(ToDate(doj, 'dd/MM/yyyy
HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy HH:mm:ss"'));

The above statement stores the result in the schema named daysbetween_data. Verify
the contents of the schema using the Dump operator as shown below.

Dump daysbetween_data;

(9243)
(11372)
(7981)

160

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

HoursBetween ()

This function accepts two date-time objects and calculates the number of hours between
the two given date-time objects.

Syntax

Here is the syntax of the HoursBetween() function.

HoursBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth, and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 ©9:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/datel.txt’' USING
PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of hours between date-of-birth and date-of-joining of the
employees using the HoursBetween() function as shown below.

hoursbetween_data = foreach doj_dob generate
HoursBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named hoursbetween_data. Verify
the contents of the schema using the Dump operator as shown below.

Dump HoursBetween;

(221832)
(272950)
(191549)

MinutesBetween ()

This function accepts two date-time objects and calculates the number of minutes between
the two given date-time objects.

161

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax

Here is the syntax of the MinutesBetween() function.

MinutesBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth, and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 ©9:00:00
002,20/06/1980 10:22:00,10/08/2011 ©9:00:00
003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig data/datel.txt’' USING
PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Now, let’s calculate the number of minutes between date-of-birth and date-of-joining of
the employees using the MinutesBetween() function as shown below.

minutesbetween_data = foreach doj_dob generate
MinutesBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named minutesbetween_data.
Verify the contents of the schema using the Dump operator as shown below.

Dump minutesbetween_data;

(13309920)
(16377038)
(11492988)

SecondsBetween ()

This function accepts two date-time objects and calculates the number of seconds between
the two given date-time objects.

Syntax

Here is the syntax of the SecondsBetween() function.

SecondsBetween(datetimel, datetime2)

162

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 ©9:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/datel.txt' USING
PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of seconds between date-of-birth and date-of-joining of
the employees using the SecondsBetween() function as shown below.

secondsbetween_data = foreach doj_dob generate
SecondsBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named secondsbetween_data.
Verify the contents of the schema using the Dump operator as shown below.

Dump secondsbetween_data;

(798595200)
(982622280)
(689579296)

MilliSecondsBetween ()

This function accepts two date-time objects and calculates the number of milliseconds
between the two given date-time objects.

Syntax
Here is the syntax of the MilliSecondsBetween() function.

MilliSecondsBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth and date-of-joining.

163

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/datel.txt' USING
PigStorage(', ')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of milli seconds between date-of-birth and date-of-joining
of the employees using the MilliSecondsBetween() function as shown below.

millisecondsbetween_data = foreach doj_dob generate
MilliSecondsBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'), ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named
millisecondsbetween_data. Verify the contents of the schema using the Dump operator
as shown below.

Dump millisecondsbetween_data;

(798595200000)
(982622280000)
(689579296000)

YearsBetween ()

This function accepts two date-time objects and calculates the number of years between
the two given date-time objects.

Syntax

Here is the syntax of the YearsBetween() function.

YearsBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth and date-of-joining.

164

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/datel.txt’' USING
PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of years between date-of-birth and date-of-joining of the
employees using the YearsBetween() function as shown below.

yearsbetween_data = foreach doj_dob generate
YearsBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named yearsbetween_data. Verify
the contents of the schema using the Dump operator as shown below.

Dump yearsbetween_data;

(25)
(31)
(21)

MonthsBetween ()

This function accepts two date-time objects and calculates the number of months between
the two given date-time objects.

Syntax

Here is the syntax of the MonthsBetween() function.

MonthsBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 03:11:44,25/10/2012 09:00:00

165

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/datel.txt’' USING
PigStorage(', ')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of minutes between date-of-birth and date-of-joining of
the employees using the MonthsBetween() function as shown below.

monthsbetween_data = foreach doj_dob generate
MinutesBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named monthsbetween_data.
Verify the contents of the schema using the Dump operator as shown below.

Dump monthsbetween;

(13309920)
(16377038)
(11492988)

WeeksBetween ()

This function accepts two date-time objects and calculates the number of weeks between
the two given date-time objects.

Syntax

Here is the syntax of the WeeksBetween() function.

WeeksBetween(datetimel, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This
file contains the date-of-birth and date-of-joining details of a particular person, id, date-
of-birth and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00
002,20/06/1980 10:22:00,10/08/2011 09:00:00
003,19/12/1990 0©3:11:44,25/10/2012 ©9:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig _data/datel.txt' USING
PigStorage(', ')as (id:int, dob:chararray, doj:chararray);

166

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Let us now calculate the number of weeks between date-of-birth and date-of-joining of
the employees using the WeeksBetween() function as shown below.

weeksbetween_data = foreach doj_dob generate
WeeksBetween(ToDate(doj, 'dd/MM/yyyy HH:mm:ss'),ToDate(dob, 'dd/MM/yyyy
HH:mm:ss'));

The above statement stores the result in the schema named weeksbetween_data. Verify
the contents of the schema using the Dump operator as shown below.

Dump weeksbetween_data;

(1320)
(1624)
(1140)

AddDuration ()

This function accepts a date-time object and a duration objects, and adds the given
duration to the date-time object and returns a new date-time object with added duration.

Syntax

Here is the syntax of the AddDuration() function.

AddDuration(datetime, duration)

Note: The Duration is represented in ISO 8601 standard. According to ISO 8601 standard
P is placed at the beginning, while representing the duration and it is called as duration
designator. Likewise,

e Y is the year designator. We use this after declaring the year.
Example : P1Y represents 1 year.

¢ M is the month designator. We use this after declaring the month.
Example : P1M represents 1 month.

e W is the week designator. We use this after declaring the week.
Example : P1W represents 1 week.

e D is the day designator. We use this after declaring the day.
Example : P1D represents 1 day.

e T is the time designator. We use this before declaring the time.
Example : PT5H represents 5 hours.

e H is the hour designator. We use this after declaring the hour.
Example : PT1H represents 1 hour.

e M is the minute designator. We use this after declaring the minute.
Example : PT1M represents 1 minute.

167

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

e S is the second designator. We use this after declaring the second.
Example : PT1S represents 1 second.

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file
contains the date-of-birth details of a particular person, id, date and time and some
duration according to ISO 8601 standard.

date.txt

001,1989/09/26 09:00:00,PT1M
002,1980/06/20 10:22:00,P1Y
003,1990/12/19 03:11:44,P3M

And, we have loaded this file into Pig with a schema named raw_date as shown below.

date_duration = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(',')as (id:int, date:chararray, duration:chararray)

Following is an example of the AddDuration() function. You can add certain Duration to
the given date-time object using this method as shown below.

Add_duration_data = foreach date_duration generate(date,duration),
AddDuration(ToDate(date, 'yyyy/MM/dd HH:mm:ss'), duration);

The result of the statement will be stored in the schema named add_duration_data.
Verify the content of this schema using the Dump operator as shown below.

Dump add_duration_data;

((1989/09/26 ©9:00:00,PT1M),1989-09-26T09:01:00.000+05:30)
((1980/06/20 10:22:00,P1Y),1981-06-20T10:22:00.000+05:30)
((1990/12/19 ©3:11:44,P3M),1991-03-19T03:11:44.000+05:30)

SubtractDuration ()

This function accepts a date-time object and a duration objects, and subtract the given
duration to the date-time object and returns a new date-time object.

Syntax

Here is the syntax of the SubtractDuration() function.

SubtractDuration(datetime, duration)

168

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file
contains the date-of-birth details of a particular person, it has person id, date and time
and some duration according to ISO 8601 standard.

date.txt

001,1989/09/26 09:00:00,PT1M
002,1980/06/20 10:22:00,P1Y
003,1990/12/19 ©3:11:44,P3M

And, we have loaded this file into Pig with a schema named raw_date as shown below.

date_duration = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING
PigStorage(', ')as (id:int, date:chararray, duration:chararray)

Following is an example of the SubtractDuration() function. You can subtract certain
duration from the given date-time object using this method as shown below.

subtractduration_data = foreach date_duration generate(date,duration),
SubtractDuration(ToDate(date, 'yyyy/MM/dd HH:mm:ss'), duration);

The result of the statement will be stored in the schema named subtractduration_data.
Verify the content of this schema using the Dump operator as shown below.

Dump subtractduration_data;

((1989/09/26 ©9:00:00,PT1M),1989-09-26T08:59:00.000+05:30)
((1980/06/20 10:22:00,P1Y),1979-06-20T10:22:00.000+05:30)
((1990/12/19 ©3:11:44,P3M),1990-09-19T03:11:44.000+05:30)

169

EIMPLYEAGSGYLEARMING

w \tutorialspoint

29. Math Functions

We have the following Math functions in Apache Pig -

Operator Description
ABS(expression)

ABS
To get the absolute value of an expression.
ACOS(expression)

ACOS
To get the arc cosine of an expression.
ASIN(expression)

ASIN
To get the arc sine of an expression.

ATAN ATAN(expression)
This function is used to get the arc tangent of an expression.
CBRT(expression)

CBRT
This function is used to get the cube root of an expression.
CEIL(expression)

CEIL This function is used to get the value of an expression rounded up to the
nearest integer.
COS(expression)

Cos
This function is used to get the trigonometric cosine of an expression.
COSH(expression)

COSH
This function is used to get the hyperbolic cosine of an expression.
EXP(expression)

EXP
This function is used to get the Euler’'s humber e raised to the power of x.
FLOOR(expression)

FLOOR
To get the value of an expression rounded down to the nearest integer.

170

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

LOG(expression)

LOG
To get the natural logarithm (base e) of an expression.
LOG10(expression)

LOG10
To get the base 10 logarithm of an expression.
RANDOM()

RANDOM To get a pseudo random number (type double) greater than or equal to 0.0
and less than 1.0.

ROUND (expression)

ROUND . . .
To get the value of an expression rounded to an integer (if the result type
is float) or rounded to a long (if the result type is double).
SIN(expression)

SIN
To get the sine of an expression.

SINH(expression)

SINH
To get the hyperbolic sine of an expression.
SQRT(expression)

SQRT
To get the positive square root of an expression.
TAN(expression)

TAN
To get the trigonometric tangent of an angle.
TANH(expression)

TANH
To get the hyperbolic tangent of an expression.

ABS ()

The ABS() function of Pig Latin is used to calculate the absolute value of a given
expression.

171

8> tutorialspoint

Apache Pig

Syntax
Here is the syntax of the ABS() function.

ABS (expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(',')as (data:float);

Let us calculate the absolute values of the contents of the math.txt file using ABS() as
shown below.

abs_data = foreach math_data generate (data), ABS(data);

The above statement stores the result in the schema named abs_ data. Verify the contents
of the schema using the Dump operator as shown below.

Dump abs_data;

(5.0,5.0)
(16.90,16.0)
(9.0,9.0)
(2.5,2.5)
(5.9,5.9)
(3.1,3.1)

ACOS ()

The ACOS() function of Pig Latin is used to calculate the arc cosine value of a given
expression.

172

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Syntax
Here is the syntax of the ACOS() function.

ACOS (expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(',')as (data:float);

Let us now calculate the arc cosine values of the contents of the math.txt file using ACOS()
function as shown below.

acos_data = foreach math_data generate (data), ACOS(data);

The above statement stores the result in the schema named abs_ data. Verify the contents
of the schema using the Dump operator as shown below.

Dump acos_data;

(5.0,NaN)
(16.0,NaN)
(9.0,NaN)
(2.5,NaN)
(5.9,NaN)
(3.1,NaN)

173

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

ASIN ()

The ASIN() function is used to calculate the arc sine value of a given expression.

Syntax
Here is the syntax of the ASIN() function.

ASIN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N
= WOV v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(', ')as (data:float);

Let us now calculate the arc sine values of the contents of the math.txt file using ASIN()
function as shown below.

asin_data = foreach math_data generate (data), ASIN(data);

The above statement stores the result in the schema named asin_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump asin_data;

(5.0,NaN)
(16.0,NaN)
(9.9,NaN)
(2.5,NaN)
(5.9,NaN)
(3.1,NaN)

174

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

ATAN ()

The ATAN() function of Pig Latin is used to calculate the arc tan value of a given
expression.

Syntax
Here is the syntax of the ATAN() function.

ATAN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N O
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(', ')as (data:float);

Let us now calculate the arc tan values of the contents of the math.txt file using ATAN()
function as shown below.

atan_data = foreach math_data generate (data), ATAN(data);

The above statement stores the result in the schema named asin_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump atan_data;

(5.0,1.373400766945016)
(16.0,1.5083775167989393)
(9.0,1.460139105621001)
(2.5,1.1902899496825317)
(5.9,1.4029004062076729)
(3.1,1.2587541962439153)

175

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

CBRT()

The CBRT() function of Pig Latin is used to calculate the cube root of a given expression.

Syntax
Here is the syntax of the CBRT() function.

CBRT(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N
= W v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(', ')as (data:float);

Let us now calculate the cube root values of the contents of the math.txt file using ATAN()
function as shown below.

cbrt_data = foreach math_data generate (data), CBRT(data);

The above statement stores the result in the schema named cbrt_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump cbrt_data;
(5.0,1.709975946676697)
(16.0,2.5198420997897464)
(9.0,2.080083823051904)
(2.5,1.3572088082974532)
(5.9,1.8069688790571206)
(3.1,1.4580997208745365)

176

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

CEIL ()

The CEIL() function is used to calculate value of a given expression rounded up to the
nearest integer.

Syntax
Here is the syntax of the CEIL() function.

CEIL(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N O
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(', ')as (data:float);

Let us now calculate the ceil values of the contents of the math.txt file using CEIL()
function as shown below.

ceil_data = foreach math_data generate (data), CEIL(data);

The above statement stores the result in the schema named ceil_data. Verify the contents
of the schema using the Dump operator as shown below.

Dump ceil_data;

(5.0,5.0)
(16.90,16.0)
(9.0,9.0)
(2.5,3.0)
(5.9,6.0)
(3.1,4.0)

177

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Cos()

The COS() function of Pig Latin is used to calculate the cosine value of a given expression.

Syntax
Here is the syntax of the COS() function.

COS(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N
= W v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig data/math.txt' USING
PigStorage(', ')as (data:float);

Now, let’s calculate the cosine values of the contents of the math.txt file using COS()
function as shown below.

cos_data = foreach math_data generate (data), COS(data);

The above statement stores the result in the schema named cos_ data. Verify the contents
of the schema using the Dump operator as shown below.

Dump cos_data;

(5.0,0.28366218546322625)
(16.0,-0.9576594803233847)
(9.0,-0.9111302618846769)
(2.5,-0.8011436155469337)
(5.9,0.9274784663996888)
(3.1,-0.999135146307834)

178

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

COSH ()

The COSH() function of Pig Latin is used to calculate the hyperbolic cosine of a given
expression.

Syntax
Here is the syntax of the COSH() function.

COSH(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N O
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(',')as (data:float);

Let us now calculate the hyperbolic cosine values of the contents of the math.txt file using
COSH() function as shown below.

cosh_data = foreach math_data generate (data), COSH(data);

The above statement stores the result in the schema named cosh_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump cosh_data;

(5.0,74.20994852478785)
(16.0,4443055.260253992)
(9.9,4051.5420254925943)
(2.5,6.132289479663686)
(5.9,182.52012106128686)
(3.1,11.121499185584959)

179

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

EXP ()

The EXP() function of Pig Latin is used to get the Euler’s number e raised to the power of
x (given expression).

Syntax
Here is the syntax of the EXP() function.

EXP(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N O
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(', ')as (data:float);

Let us now calculate the exp values of the contents of the math.txt file using EXP() function
as shown below.

exp_data = foreach math_data generate (data), EXP(data);

The above statement stores the result in the schema named exp_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump exp_data;

(5.0,148.4131591025766)
(16.0,8886110.520507872)
(9.0,8103.083927575384)
(2.5,12.182493960703473)
(5.9,365.0375026780162)

(3.1,22.197949164480132)

180

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

FLOOR()

The FLOOR() function is used to calculate the value of an expression rounded down to
the nearest integer Here is the syntax of the FLOOR() function.

FLOOR(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N
= W v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(', ')as (data:float);

Now, let’s calculate the floor values of the contents of the math.txt file using floor() as
shown below.

floor_data = foreach math_data generate (data), FLOOR(data);

The above statement stores the result in the schema named floor_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump floor_data;

(5.0,5.0)
(16.90,16.0)
(9.0,9.0)
(2.5,2.0)
(5.9,5.0)

(3.1,3.0)

LOG ()

The LOG() function of Pig Latin is used to calculate the natural logarithm (base e) value
of a given expression.

181

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

LOG(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w v N O
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(',')as (data:float);

Let us now calculate the log values of the contents of the math.txt file using LOG() function
as shown below.

log data = foreach math_data generate (data),LOG(data);

The above statement stores the result in the schema named log_data. Verify the contents
of the schema using the Dump operator as shown below.

Dump log_data;

(5.0,1.6094379124341003)
(16.0,2.772588722239781)
(9.0,2.1972245773362196)
(2.5,0.9162907318741551)
(5.9,1.774952367075645)

(3.1,1.1314020807274126)

LOG10()

The LOG10() function of Pig Latin is used to calculate the natural logarithm base 10 value
of a given expression.

LOG1O(expression)

182

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

w U1 N O
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig _data/math.txt' USING
PigStorage(', ')as (data:float);

Let us now calculate the log10 values of the contents of the math.txt file using LOG10()
function as shown below.

log data = foreach math_data generate (data),L0G1l0(data);

The above statement stores the result in the schema named log_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump logle_data;

(5.0,0.6989700043360189)
(16.0,1.2041199826559248)
(9.0,0.9542425094393249)
(2.5,0.3979400086720376)
(5.9,0.7708520186620678)
(3.1,0.4913616804737727)

RANDOM ()

The RANDOM() function is used to get a pseudo random number (type double) greater
than or equal to 0.0 and less than 1.0.

RANDOM()

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

183

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

math.txt

w v NV
R WO v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt’' USING
PigStorage(',')as (data:float);

Let us now generate random values of the contents of the math.txt file using RANDOM()
function as shown below.

random_data = foreach math_data generate (data), RANDOM();

The above statement stores the result in the schema named random_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump random_data;

(5.0,0.6842057767279982)
(16.0,0.9725172591786139)
(9.0,0.4159326414649489)
(2.5,0.30962777780713147)
(5.9,0.705213727551145)

(3.1,0.24247708413861724)

ROUND ()

The ROUND() function is used to get the value of an expression rounded to an integer (if
the result type is float) or rounded to a long (if the result type is double).

ROUND ()

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

184

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

w v N
= O U

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(',')as (data:float);

Let us now generate round values of the contents of the math.txt file using ROUND()
function as shown below.

round_data = foreach math_data generate (data), ROUND(data);

The above statement stores the result in the schema named round_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump round_data;

(5.0,5)
(16.0,16)
(9.0,9)
(2.5,3)
(5.9,6)
(3.1,3)

SIN()

The SIN() function of Pig Latin is used to calculate the sine value of a given expression.

Syntax
Here is the syntax of the SIN() function.

SIN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

185

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

w v NV
R WOV wun

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(',')as (data:float);

Now, let’s calculate the sine values of the contents of the math.txt file using SIN() function
as shown below.

sin_data = foreach math_data generate (data), SIN(data);

The above statement stores the result in the schema named sin_data. Verify the contents
of the schema using the Dump operator as shown below.

Dump sin_data;

(5.0,-0.9589242746631385)
(16.0,-0.2879033166650653)
(9.0,0.4121184852417566)
(2.5,0.5984721441039564)
(5.9,-0.3738765763789988)
(3.1,0.04158075771824354)

SINH ()

The SINH() function is used to calculate the hyperbolic sine value of a given expression.

Syntax
Here is the syntax of the SINH() function.

SINH(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

186

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

w v NV
R WOV wun

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(',')as (data:float);

Let us now calculate the hyperbolic sine values of the contents of the math.txt file using
SINH() function as shown below.

sinh_data = foreach math_data generate (data), SINH(data);

The above statement stores the result in the schema named sinh_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump sinh_data;

(5.0,74.20321057778875)
(16.0,4443055.26025388)
(9.0,4051.54190208279)
(2.5,6.0502044810397875)
(5.9,182.51738161672935)
(3.1,11.076449978895173)

SQRT ()

The SQRT() function is used to calculate the square root of a given expression.

Syntax
Here is the syntax of the SQRT() function.

SQRT (expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

math.txt

187

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

w v NV
R WOV wun

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(', ')as (data:float);

Let us now calculate the square root values of the contents of the math.txt file using
SQRT() function as shown below.

sqrt_data = foreach math_data generate (data), SQRT(data);

The above statement stores the result in the schema named sqrt_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump sqrt_data;

(5.0,2.23606797749979)
(16.0,4.0)

(9.0,3.0)
(2.5,1.5811388300841898)
(5.9,2.4289915799292987)
(3.1,1.76068165908337)

TAN()

The TAN() function is used to calculate the trigonometric tangent of a given expression
(angle).

Syntax
Here is the syntax of the TAN() function.

TAN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

188

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

math.txt

w v NV
R WO v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(',')as (data:float);

Let us now calculate the tan values of the contents of the math.txt file using TAN() function
as shown below.

tan_data = foreach math_data generate (data), TAN(data);

The above statement stores the result in the schema named tan_data. Verify the contents
of the schema using the Dump operator as shown below.

Dump tan_data;

(5.0,-3.380515006246586)
(16.90,0.3006322420239034)
(9.0,-0.45231565944180985)
(2.5,-0.7470222972386603)
(5.9,-0.4031107890087444)

(3.1,-0.041616750118239246)

TANH ()

The TANH() function is used to calculate the hyperbolic trigonometric tangent of a given
expression (angle).

Syntax
Here is the syntax of the TANH() function.

TANH(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file
contains integer and floating point values as shown below.

189

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

math.txt

w v NV
R WO v

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING
PigStorage(',')as (data:float);

Let us now calculate the hyperbolic tangent values for the contents of the math.txt file
using TANH() function as shown below.

tanh_data = foreach math_data generate (data), TANH(data);

The above statement stores the result in the schema named tanh_data. Verify the
contents of the schema using the Dump operator as shown below.

Dump tanh_data;

(5.0,0.9999092042625951)
(16.0,0.9999999999999747)
(9.0,0.999999969540041)
(2.5,0.9866142981514303)
(5.9,0.9999849909996685)

(3.1,0.9959493584508665)

190

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig

Part 11: Other Modes of Execution

191

IIIIIIIIIIIIIIIIII

30. User-Defined Functions

In addition to the built-in functions, Apache Pig provides extensive support for User
Defined Functions (UDF’s). Using these UDF’s, we can define our own functions and use
them. The UDF support is provided in six programming languages, namely, Java, Jython,
Python, JavaScript, Ruby and Groovy.

For writing UDF’s, complete support is provided in Java and limited support is provided in
all the remaining languages. Using Java, you can write UDF’s involving all parts of the
processing like data load/store, column transformation, and aggregation. Since Apache
Pig has been written in Java, the UDF’s written using Java language work efficiently
compared to other languages.

In Apache Pig, we also have a Java repository for UDF's named Piggybank. Using
Piggybank, we can access Java UDF’s written by other users, and contribute our own
UDF’s.

Types of UDF’s in Java

While writing UDF’s using Java, we can create and use the following three types of
functions -

¢ Filter Functions - The filter functions are used as conditions in filter statements.
These functions accept a Pig value as input and return a Boolean value.

e Eval Functions - The Eval functions are used in FOREACH-GENERATE statements.
These functions accept a Pig value as input and return a Pig result.

e Algebraic Functions - The Algebraic functions act on inner bags in a
FOREACHGENERATE statement. These functions are used to perform full
MapReduce operations on an inner bag.

Writing UDF’s using Java

To write a UDF using Java, we have to integrate the jar file Pig-0.15.0.jar. In this section,
we discuss how to write a sample UDF using Eclipse. Before proceeding further, make sure
you have installed Eclipse and Maven in your system.

Follow the steps given below to write a UDF function -

1. Open Eclipse and create a new project (say myproject).
2. Convert the newly created project into a Maven project.

3. Copy the following content in the pom.xml. This file contains the Maven
dependencies for Apache Pig and Hadoop-core jar files.

192

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache
.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>Pig Udf</groupId>
<artifactId>Pig Udf</artifactId>
<version>@.0.1-SNAPSHOT</version>
<build>
<sourceDirectory>src</sourceDirectory>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.3</version>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>org.apache.pig</groupId>
<artifactId>pig</artifactId>
<version>@.15.0</version>
</dependency>

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>0.20.2</version>
</dependency>

</dependencies>

</project>

4. Save the file and refresh it. In the Maven Dependencies section, you can find the
downloaded jar files.

5. Create a new class file with name Sample_Eval and copy the following content in
it.

import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

193

EIMPLYEAGSGYLEARMING

w \tutorialspoint

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd

Apache Pig

public class Sample_Eval extends EvalFunc<String>{

public String exec(Tuple input) throws IOException {

if (input == null || input.size() == 0)
return null;

String str = (String)input.get(0);
return str.toUppercCase();

While writing UDF’s, it is mandatory to inherit the EvalFunc class and provide
implementation to exec() function. Within this function, the code required for the
UDF is written. In the above example, we have return the code to convert the
contents of the given column to uppercase.

6. After compiling the class without errors, right-click on the Sample_Eval.java file. It
gives you a menu. Select export as shown in the following screenshot.

m e d -
File Edit Source Refact¢ 2Pen F3 sip

Open With
- % P, A imei®
Open Type Hierarchy F4 -
Show In Shift+Alt+W > = | [@aval
% Package Explore 88 = Copy cui+C i .
Copy Qualified Name
A = % paste ctrl+V
D =4 JRE System Library Delete Delete ads Evalfunc<string:
P =i Referenced Librarie gyijld path Yhout) throws IOExcer
= data Source Shift+Alt+S » sut.size() == 0
2 datafile Refactor Shift+Alt+T)
! pig_udf
v 4 ig_ud Import put .get (0);
- #src | - (; 3
- [# (default package =
b II Filter_function ~References o ot
: z I Declarations >
D =\JRE System Library Refresh F5
b =\ Maven Dependenci Assign Working Sets...
b @xbin Debug As >
(I Run As >])
sample_eval.java - Pig_udf; Validate
Team >
Compare With >
Replace With >

194

I@j Mtutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

7. On clicking export, you will get the following window. Click on JAR file.

- Export »

Select /1
Export resources into a JAR file on the local file system. H

Select an export destination:

[4]

[P = General ~

%D & Install 1
‘V & Java

" @) Javadoc

! [Runnable JAR file z
b ¢ Plug-in Development
D (= Run/Debug

ltb > Team

b = XML L

@ | next> || cancel |

8. Proceed further by clicking Next> button. You will get another window where you
need to enter the path in the local file system, where you need to store the jar file.

= JAR Export A

JAR File Specification
Define which resources should be exported into the JAR. 1

Select the resources to export:
Export generated class files and resources
[l Export all output folders for checked projects
[l Export Java source files and resources
[Export refactorings for checked projects. =« =

Select the export destination:

“

JAR file: | /home/Hadoop/Pig/pig_function/sample_udf.jar | Browse..,
('__7\) < Back Next > Cancel | ‘ Finish 7
195
tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

9. Finally click the Finish button. In the specified folder, a Jar file sample_udf.jar is

created. This jar file contains the UDF written in Java.

Using the UDF

After writing the UDF and generating the Jar file, we have to register the Jar file using the
Register operator, and define alias to the UDF using the define operator. Then you can use

it in the Pig Latin statements just like any other built-in function.

Register

The Register operator is used to registers a JAR file which contains the UDF. By registering

the Jar file, users can intimate the location of the UDF to Pig.

Syntax

Given below is the syntax of the Register operator.

REGISTER path;

Registering sample_udf.jar

Start Apache Pig in local mode as shown below.

$cd PIG_HOME/bin

$./pig -x local

Register the jar file sample_udf.jar which is in the
/home/Hadoop/Pig/pig_data/sample_udf.jar.

path

REGISTER '/home/Hadoop/Pig/pig data/sample_udf.jar'

Define

The Define operator is used to assign an alias to a UDF or streaming command.

Syntax

Given below is the syntax of the Define operator.

DEFINE alias {function | [command™ [input] [output] [ship] [cache]
[stderr]] };

Defining alias to the UDF

Define the alias for sample_eval as shown below.

DEFINE sample_eval sample_eval();

EIMPLYEAGSGYLEARMING

w \tutorialspoint

196

Using the UDF

Apache Pig

Suppose there is a file named emp_data in the HDFS /Pig_Data/ directory with the

following content.

001,Robin,22,newyork
002,B0B,23,Kolkata
003,Maya, 23, Tokyo
004,Sara, 25,London
005,David, 23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert, 22, newyork
008,Syam, 23,Kolkata
009,Mary, 25, Tokyo
010,Saran, 25,London
011,Stacy, 25,Bhuwaneshwar
012,Kelly,22,Chennai

And assume we have loaded this file into Pig as shown below.

emp_data = LOAD 'hdfs://localhost:9000/pig data/empl.txt’' USING
PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Let us now convert the names of the employees in to upper case using the UDF

sample_eval.

Upper_case = FOREACH emp_data GENERATE sample_eval(name);

Verify the contents of the schema Upper_case as shown below.

Dump Upper_case;

(ROBIN)
(BOB)
(MAYA)
(SARA)
(DAVID)
(MAGGY)
(ROBERT)
(SYAM)
(MARY)
(SARAN)
(STACY)
(KELLY)

EIMPLYEAGSGYLEARMING

w \tutorialspoint

197

31. Running Scripts

Here in this chapter, we will see how how to run Apache Pig scripts in batch mode.

Comments in Pig Script

While writing a script in a file, we can include comments in it as shown below.

Multi-line comments

/* These are the multi-line comments

In the pig script */

Single —-line comments

--we can write single line comments like this.

Executing Pig Script in Batch mode

While executing Apache Pig statements in batch mode, follow the steps given below.

Step 1

Write all the required Pig Latin statements in a single file. We can write all the Pig Latin
statements and commands in a single file and save it as .pig file.

Step 2

Execute the Apache Pig script. You can execute the Pig script from the shell (Linux) as
shown below.

Local mode MapReduce mode

$ pig -x local Sample_script.pig $ pig -x mapreduce Sample_script.pig

You can execute it from the Grunt shell as well using the exec command as shown below.

grunt> exec /sample_script.pig

198

@ tutorialspoint

EIMPLYEAGSGYLEARMING

Apache Pig

Executing a Pig Script from HDFS

We can also execute a Pig script that resides in the HDFS. Suppose there is a Pig script
with the name Sample_script.pig in the HDFS directory named /pig_data/. We can
execute it as shown below.

$ pig -x mapreduce hdfs://localhost:9000/pig data/Sample_script.pig

Example

Assume we have a file student_details.txt in HDFS with the following content.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune

005, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak, 24,9848022334,trivendram
008,Bharathi,Nambiayar, 24,9848022333,Chennai

And we have read it into a relation student using LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig _data/student_data.txt' USING
PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

We also have a sample script with the name sample_script.pig, in the same HDFS
directory performing operations and transformations on the student schema, as shown
below.

student = LOAD 'hdfs://localhost:9000/pig data/student_data.txt' USING
PigStorage(', ')as (id:int, firstname:chararray, lastname:chararray,
phone:chararray, city:chararray);

student_order = ORDER student_details BY age DESC;

student_limit

LIMIT student_details 4;

Dump student_limit;

e The first statement of the script will load the data in the file named
student_data.txt as a relation named student.

e The second statement of the script will arrange the tuples of the schema in
descending order, based on age, and store it as student_order.

199

EIMPLYEAGSGYLEARMING

w \tutorialspoint

Apache Pig
e The third statement of the script will store the first 4 tuples of student_order as
student_limit.

e Finally the fourth statement will dump the content of the relation student_limit.

Let us now execute the sample_script.pig as shown below.

$./pig -x mapreduce hdfs://localhost:9000/pig data/sample_script.pig

Apache Pig gets executed and gives you the output with the following content.

(7,Komal,Nayak,24,9848022334,trivendram)
(8,Bharathi,Nambiayar,24,9848022333,Chennai)

(5, Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)

(6,Archana,Mishra, 23,9848022335,Chennai)

2015-10-19 10:31:27,446 [main] INFO org.apache.pig.Main - Pig script completed
in 12 minutes, 32 seconds and 751 milliseconds (752751 ms)

200

EIMPLYEAGSGYLEARMING

w \tutorialspoint

