
r

Apache Pig

i

About the Tutorial

Apache Pig is an abstraction over MapReduce. It is a tool/platform which is used to analyze

larger sets of data representing them as data flows. Pig is generally used with Hadoop;

we can perform all the data manipulation operations in Hadoop using Pig.

Audience

This tutorial is meant for all those professionals working on Hadoop who would like to

perform MapReduce operations without having to type complex codes in Java.

Prerequisites

To make the most of this tutorial, you should have a good understanding of the basics of

Hadoop and HDFS commands. It will certainly help if you are good at SQL.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache Pig

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

PART 1: INTRODUCTION .. 1

1. Apache Pig – Overview ... 2
What is Apache Pig? .. 2
Why Do We Need Apache Pig? .. 2
Features of Pig ... 2
Apache Pig Vs MapReduce .. 3
Apache Pig Vs SQL ... 3
Apache Pig Vs Hive .. 4
Applications of Apache Pig .. 4
Apache Pig – History .. 5

2. Apache Pig – Architecture ... 6
Apache Pig – Components ... 7
Pig Latin – Data Model .. 7

PART 2: ENVIRONMENT .. 9

3. Apache Pig – Installation ... 10
Prerequisites .. 10
Download Apache Pig .. 10
Install Apache Pig .. 13
Configure Apache Pig .. 14

4. Apache Pig – Execution ... 16
Apache Pig – Execution Modes ... 16
Apache Pig – Execution Mechanisms .. 16
Invoking the Grunt Shell .. 16
Executing Apache Pig in Batch Mode .. 17

5. Grunt Shell .. 18
Shell Commands .. 18
Utility Commands .. 19

PART 3: PIG LATIN ... 25

6. Pig Latin – Basics ... 26
Pig Latin – Data Model ... 26
Pig Latin – Statemets ... 26
Pig Latin – Data types .. 27
Null Values ... 27
Pig Latin – Arithmetic Operators ... 28

Apache Pig

iii

Pig Latin – Comparison Operators ... 28
Pig Latin – Type Construction Operators ... 29
Pig Latin – Relational Operations .. 29

PART 4: LOAD AND STORE OPERATORS ... 32

7. Apache Pig -- Reading Data ... 33
Preparing HDFS .. 33
The Load Operator .. 35

8. Storing Data .. 38

PART 5: DIAGNOSTIC OPERATORS ... 41

9. Diagnostic Operators .. 42
Dump Operator ... 42

10. Describe Operator ... 46

11. Explain Operator ... 47

12. Illustrate Command .. 51

PART 6: GROUPING AND JOINING ... 52

13. Group Operator .. 53
Grouping by Multiple Columns .. 54
Group All .. 55

14. Cogroup Operator ... 56
Grouping Two Relations using Cogroup .. 56

15. Join Operator .. 58
Inner Join ... 58
Self - join .. 59
Outer Join .. 60
Using Multiple Keys ... 63

16. Cross Operator .. 65

PART 7: COMBINING AND SPLITTING .. 68

17. Union Operator ... 69

18. Split Operator ... 71

PART 8: FILTERING .. 73

19. Filter Operator .. 74

Apache Pig

iv

20. Distinct Operator .. 76

21. Foreach Operator .. 78

PART 9: SORTING .. 80

22. Order By ... 81

23. Limit Operator .. 83

PART 10: PIG LATIN BUILT-IN FUNCTIONS ... 85

24. Eval Functions ... 86
Eval Functions .. 86
AVG .. 87
Max .. 88
Min .. 90
Count ... 92
COUNT_STAR ... 93
Sum .. 95
DIFF .. 97
SUBTRACT .. 99
IsEmpty .. 101
Pluck Tuple .. 103
Size () .. 105
BagToString () ... 106
Concat () ... 108
Tokenize () .. 110

25. Load and Store Functions .. 113
PigStorage () ... 113
TextLoader ()... 114
BinStorage () ... 115
Handling Compression ... 117

26. Bag and Tuple Functions ... 118
TOBAG () ... 118
TOP () .. 119
TOTUPLE () .. 121
TOMAP () .. 122

27. String Functions .. 123
STARTSWITH () .. 124
ENDSWITH ... 126
SUBSTRING .. 127
EqualsIgnoreCase .. 128
INDEXOF () .. 129
LAST_INDEX_OF () .. 131
LCFIRST () .. 132
UCFIRST () ... 133
UPPER () .. 134

Apache Pig

v

LOWER () ... 136
REPLACE () .. 137
STRSPLIT () .. 138
STRSPLITTOBAG () ... 139
Trim () ... 141
LTRIM () .. 142
RTRIM .. 143

28. date-time Functions .. 145
ToDate () ... 147
GetDay () ... 148
GetHour () ... 149
GetMinute () ... 150
GetSecond () ... 151
GetMilliSecond () .. 152
GetYear .. 153
GetMonth () .. 154
GetWeek ().. 156
GetWeekYear () .. 157
CurrentTime () .. 158
ToString () ... 159
DaysBetween () ... 160
HoursBetween () ... 161
MinutesBetween () ... 161
SecondsBetween () ... 162
MilliSecondsBetween () .. 163
YearsBetween ().. 164
MonthsBetween () .. 165
WeeksBetween () ... 166
AddDuration () .. 167
SubtractDuration () ... 168

29. Math Functions ... 170
ABS () .. 171
ACOS () .. 172
ASIN () ... 174
ATAN ().. 175
CBRT () .. 176
CEIL () .. 177
COS () .. 178
COSH () .. 179
EXP () ... 180
FLOOR () .. 181
LOG () ... 181
LOG10 () .. 182
RANDOM () ... 183
ROUND () .. 184
SIN () ... 185
SINH () ... 186
SQRT () .. 187
TAN () .. 188

Apache Pig

vi

TANH () ... 189

PART 11: OTHER MODES OF EXECUTION .. 191

30. User-Defined Functions ... 192
Types of UDF’s in Java ... 192
Writing UDF’s using Java ... 192
Using the UDF .. 196

31. Running Scripts ... 198
Comments in Pig Script .. 198
Executing Pig Script in Batch mode ... 198
Executing a Pig Script from HDFS .. 199

Apache Pig

1

Part 1: Introduction

Apache Pig

2

What is Apache Pig?

Apache Pig is an abstraction over MapReduce. It is a tool/platform which is used to analyze

larger sets of data representing them as data flows. Pig is generally used with Hadoop;

we can perform all the data manipulation operations in Hadoop using Apache Pig.

To write data analysis programs, Pig provides a high-level language known as Pig Latin.

This language provides various operators using which programmers can develop their own

functions for reading, writing, and processing data.

To analyze data using Apache Pig, programmers need to write scripts using Pig Latin

language. All these scripts are internally converted to Map and Reduce tasks. Apache Pig

has a component known as Pig Engine that accepts the Pig Latin scripts as input and

converts those scripts into MapReduce jobs.

Why Do We Need Apache Pig?

Programmers who are not so good at Java normally used to struggle working with Hadoop,

especially while performing any MapReduce tasks. Apache Pig is a boon for all such

programmers.

 Using Pig Latin, programmers can perform MapReduce tasks easily without having

to type complex codes in Java.

 Apache Pig uses multi-query approach, thereby reducing the length of codes.

For example, an operation that would require you to type 200 lines of code (LoC)

in Java can be easily done by typing as less as just 10 LoC in Apache Pig. Ultimately

Apache Pig reduces the development time by almost 16 times.

 Pig Latin is SQL-like language and it is easy to learn Apache Pig when you are

familiar with SQL.

 Apache Pig provides many built-in operators to support data operations like joins,

filters, ordering, etc. In addition, it also provides nested data types like tuples,

bags, and maps that are missing from MapReduce.

Features of Pig

Apache Pig comes with the following features:

 Rich set of operators: It provides many operators to perform operations like

join, sort, filer, etc.

 Ease of programming: Pig Latin is similar to SQL and it is easy to write a Pig

script if you are good at SQL.

1. Apache Pig – Overview

Apache Pig

3

 Optimization opportunities: The tasks in Apache Pig optimize their execution

automatically, so the programmers need to focus only on semantics of the

language.

 Extensibility: Using the existing operators, users can develop their own functions

to read, process, and write data.

 UDF’s: Pig provides the facility to create User-defined Functions in other

programming languages such as Java and invoke or embed them in Pig Scripts.

 Handles all kinds of data: Apache Pig analyzes all kinds of data, both structured

as well as unstructured. It stores the results in HDFS.

Apache Pig Vs MapReduce

Listed below are the major differences between Apache Pig and MapReduce.

Apache Pig

MapReduce

Apache Pig is a data flow language.

MapReduce is a data processing paradigm.

It is a high level language.

MapReduce is low level and rigid.

Performing a Join operation in Apache Pig

is pretty simple.

It is quite difficult in MapReduce to perform

a Join operation between datasets.

Any novice programmer with a basic

knowledge of SQL can work conveniently

with Apache Pig.

Exposure to Java is must to work with

MapReduce.

Apache Pig uses multi-query approach,

thereby reducing the length of the codes to

a great extent.

MapReduce will require almost 20 times

more the number of lines to perform the

same task.

There is no need for compilation. On

execution, every Apache Pig operator is

converted internally into a MapReduce job.

MapReduce jobs have a long compilation

process.

Apache Pig Vs SQL

Listed below are the major differences between Apache Pig and SQL.

Pig

SQL

Pig Latin is a procedural language.

SQL is a declarative language.

Apache Pig

4

In Apache Pig, schema is optional. We can

store data without designing a schema

(values are stored as $01, $02 etc.)

Schema is mandatory in SQL.

The data model in Apache Pig is nested

relational.

The data model used in SQL is flat

relational.

Apache Pig provides limited opportunity

for Query optimization.

There is more opportunity for query

optimization in SQL.

In addition to above differences, Apache Pig Latin;

 Allows splits in the pipeline.

 Allows developers to store data anywhere in the pipeline.

 Declares execution plans.

 Provides operators to perform ETL (Extract, Transform, and Load) functions.

Apache Pig Vs Hive

Both Apache Pig and Hive are used to create MapReduce jobs. And in some cases, Hive

operates on HDFS in a similar way Apache Pig does. In the following table, we have listed

a few significant points that set Apache Pig apart from Hive.

Apache Pig

Hive

Apache Pig uses a language called Pig

Latin. It was originally created at Yahoo.

Hive uses a language called HiveQL. It

was originally created at Facebook.

Pig Latin is a data flow language.

HiveQL is a query processing language.

Pig Latin is a procedural language and it fits

in pipeline paradigm.

HiveQL is a declarative language.

Apache Pig can handle structured,

unstructured, and semi-structured data.

Hive is mostly for structured data.

Applications of Apache Pig

Apache Pig is generally used by data scientists for performing tasks involving ad-hoc

processing and quick prototyping. Apache Pig is used;

 To process huge data sources such as web logs.

Apache Pig

5

 To perform data processing for search platforms.

 To process time sensitive data loads.

Apache Pig – History

In 2006, Apache Pig was developed as a research project at Yahoo, especially to create

and execute MapReduce jobs on every dataset. In 2007, Apache Pig was open sourced

via Apache incubator. In 2008, the first release of Apache Pig came out. In 2010, Apache

Pig graduated as an Apache top-level project.

Apache Pig

6

The language used to analyze data in Hadoop using Pig is known as Pig Latin. It is a high-

level data processing language which provides a rich set of data types and operators to

perform various operations on the data.

To perform a particular task Programmers using Pig, programmers need to write a Pig

script using the Pig Latin language, and execute them using any of the execution

mechanisms (Grunt Shell, UDFs, Embedded). After execution, these scripts will go through

a series of transformations applied by the Pig Framework, to produce the desired output.

Internally, Apache Pig converts these scripts into a series of MapReduce jobs, and thus, it

makes the programmer’s job easy. The architecture of Apache Pig is shown below.

Figure: Apache Pig Architecture

2. Apache Pig – Architecture

Apache Pig

7

Apache Pig – Components

As shown in the figure, there are various components in the Apache Pig framework. Let us

take a look at the major components.

Parser

Initially the Pig Scripts are handled by the Parser. It checks the syntax of the script, does

type checking, and other miscellaneous checks. The output of the parser will be a DAG

(directed acyclic graph), which represents the Pig Latin statements and logical operators.

In the DAG, the logical operators of the script are represented as the nodes and the data

flows are represented as edges.

Optimizer

The logical plan (DAG) is passed to the logical optimizer, which carries out the logical

optimizations such as projection and pushdown.

Compiler

The compiler compiles the optimized logical plan into a series of MapReduce jobs.

Execution engine

Finally the MapReduce jobs are submitted to Hadoop in a sorted order. Finally, these

MapReduce jobs are executed on Hadoop producing the desired results.

Pig Latin – Data Model

The data model of Pig Latin is fully nested and it allows complex non-atomic datatypes

such as map and tuple. Given below is the diagrammatical representation of Pig Latin’s

data model.

Atom

Any single value in Pig Latin, irrespective of their data, type is known as an Atom. It is

stored as string and can be used as string and number. int, long, float, double, chararray,

and bytearray are the atomic values of Pig.

A piece of data or a simple atomic value is known as a field.

Apache Pig

8

Example: ‘raja’ or ‘30’

Tuple

A record that is formed by an ordered set of fields is known as a tuple, the fields can be

of any type. A tuple is similar to a row in a table of RDBMS.

Example: (Raja, 30)

Bag

A bag is an unordered set of tuples. In other words, a collection of tuples (non-unique) is

known as a bag. Each tuple can have any number of fields (flexible schema). A bag is

represented by ‘{}’. It is similar to a table in RDBMS, but unlike a table in RDBMS, it is

not necessary that every tuple contain the same number of fields or that the fields in the

same position (column) have the same type.

Example: {(Raja, 30), (Mohammad, 45)}

A bag can be a field in a relation; in that context, it is known as inner bag.

Example: {Raja, 30, {9848022338, raja@gmail.com,}}

Relation

A relation is a bag of tuples. The relations in Pig Latin are unordered (there is no

guarantee that tuples are processed in any particular order).

Map

A map (or data map) is a set of key-value pairs. The key needs to be of type chararray

and should be unique. The value might be of any type. It is represented by ‘[]’

Example: [name#Raja, age#30]

mailto:raja@gmail.com,%7d

Apache Pig

9

Part 2: Environment

Apache Pig

10

This chapter explains the how to download, install, and set up Apache Pig in your system.

Prerequisites

It is essential that you have Hadoop and Java installed on your system before you go for

Apache Pig. Therefore, prior to installing Apache Pig, install Hadoop and Java by following

the steps given in the following link:

http://www.tutorialspoint.com/hadoop/hadoop_enviornment_setup.htm

Download Apache Pig

First of all, download the latest version of Apache Pig from the website

https://pig.apache.org/.

Step 1

Open the homepage of Apache Pig website. Under the section News, click on the link

release page as shown in the following snapshot.

3. Apache Pig – Installation

http://www.tutorialspoint.com/hadoop/hadoop_enviornment_setup.htm
https://pig.apache.org/

Apache Pig

11

Step 2

On clicking the specified link, you will be redirected to the Apache Pig Releases page.

On this page, under the Download section, you will have two links, namely, Pig 0.8 and

later and Pig 0.7 and before. Click on the link Pig 0.8 and later, then you will be

redirected to the page having a set of mirrors.

Step 3

http://www.apache.org/dyn/closer.cgi/pig
http://www.apache.org/dyn/closer.cgi/pig
http://archive.apache.org/dist/hadoop/pig/
http://www.apache.org/dyn/closer.cgi/pig

Apache Pig

12

Choose and click any one of these mirrors as shown below.

Step 4

These mirrors will take you to the Pig Releases page. This page contains various versions

of Apache Pig. Click the latest version among them.

Step 5

Apache Pig

13

Within these folders, you will have the source and binary files of Apache Pig in various

distributions. Download the tar files of the source and binary files of Apache Pig 0.15, pig-

0.15.0-src.tar.gz and pig-0.15.0.tar.gz.

Install Apache Pig

After downloading the Apache Pig software, install it in your Linux environment by

following the steps given below.

Step 1

Create a directory with the name Pig in the same directory where the installation

directories of Hadoop, Java, and other software were installed. (In our tutorial, we have

created the Pig directory in the user named Hadoop).

$ mkdir Pig

Step 2

Extract the downloaded tar files as shown below.

$ cd Downloads/

$ tar zxvf pig-0.15.0-src.tar.gz

$ tar zxvf pig-0.15.0.tar.gz

Step 3

Apache Pig

14

Move the content of pig-0.15.0-src.tar.gz file to the Pig directory created earlier as

shown below.

$ mv pig-0.15.0-src.tar.gz/* /home/Hadoop/Pig/

Configure Apache Pig

After installing Apache Pig, we have to configure it. To configure, we need to edit two files:

bashrc and pig.properties.

.bashrc file

In the .bashrc file, set the following variables –

 PIG_HOME folder to the Apache Pig’s installation folder,

 PATH environment variable to the bin folder, and

 PIG_CLASSPATH environment variable to the etc (configuration) folder of your

Hadoop installations (the directory that contains the core-site.xml, hdfs-site.xml and

mapred-site.xml files).

export PIG_HOME = /home/Hadoop/Pig

export PATH = PATH:/home/Hadoop/pig/bin

export PIG_CLASSPATH = $HADOOP_HOME/conf

pig.properties file

In the conf folder of Pig, we have a file named pig.properties. In the pig.properties file,

you can set various parameters as given below.

pig -h properties

The following properties are supported:

Logging:

 verbose=true|false; default is false. This property is the same as -v

switch

 brief=true|false; default is false. This property is the same as -b

switch

 debug=OFF|ERROR|WARN|INFO|DEBUG; default is INFO. This property is the

same as -d switch

 aggregate.warning=true|false; default is true. If true, prints count of

warnings of each type rather than logging each warning.

Performance tuning:

 pig.cachedbag.memusage=<mem fraction>; default is 0.2 (20% of all memory).

 Note that this memory is shared across all large bags used by the application.

 pig.skewedjoin.reduce.memusagea=<mem fraction>; default is 0.3 (30% of

all memory).

 Specifies the fraction of heap available for the reducer to perform the join.

Apache Pig

15

 pig.exec.nocombiner=true|false; default is false.

 Only disable combiner as a temporary workaround for problems.

 opt.multiquery=true|false; multiquery is on by default.

 Only disable multiquery as a temporary workaround for problems.

 opt.fetch=true|false; fetch is on by default.

 Scripts containing Filter, Foreach, Limit, Stream, and Union can be

dumped without MR jobs.

 pig.tmpfilecompression=true|false; compression is off by default.

 Determines whether output of intermediate jobs is compressed.

 pig.tmpfilecompression.codec=lzo|gzip; default is gzip.

 Used in conjunction with pig.tmpfilecompression. Defines

compression type.

 pig.noSplitCombination=true|false. Split combination is on by default.

 Determines if multiple small files are combined into a single map.

 pig.exec.mapPartAgg=true|false. Default is false.

 Determines if partial aggregation is done within map phase,

 before records are sent to combiner.

 pig.exec.mapPartAgg.minReduction=<min aggregation factor>. Default is 10.

 If the in-map partial aggregation does not reduce the output num records

 by this factor, it gets disabled.

Miscellaneous:

 exectype=mapreduce|tez|local; default is mapreduce. This property is

the same as -x switch

 pig.additional.jars.uris=<comma seperated list of jars>. Used in place

of register command.

 udf.import.list=<comma seperated list of imports>. Used to avoid

package names in UDF.

 stop.on.failure=true|false; default is false. Set to true to terminate

on the first error.

 pig.datetime.default.tz=<UTC time offset>. e.g. +08:00. Default is the

default timezone of the host.

 Determines the timezone used to handle datetime datatype and UDFs.

Additionally, any Hadoop property can be specified.

Verifying the Installation

Verify the installation of Apache Pig by typing the version command. If the installation is

successful, you will get the version of Apache Pig as shown below.

$ pig –version

Apache Pig version 0.15.0 (r1682971)

compiled Jun 01 2015, 11:44:35

http://pig.datetime.default.tz/

Apache Pig

16

In the previous chapter, we explained how to install Apache Pig. In this chapter, we will

discuss how to execute Apache Pig.

Apache Pig – Execution Modes

You can run Apache Pig in two modes, namely, Local Mode and HDFS mode.

Local Mode

In this mode, all the files are installed and run from your local host and local file system.

There is no need of Hadoop or HDFS. This mode is generally used for testing purpose.

MapReduce Mode

MapReduce mode is where we load or process the data that exists in the Hadoop File

System (HDFS) using Apache Pig. In this mode, whenever we execute the Pig Latin

statements to process the data, a MapReduce job is invoked in the back-end to perform a

particular operation on the data that exists in the HDFS.

Apache Pig – Execution Mechanisms

Apache Pig scripts can be executed in three ways, namely, interactive mode, batch mode,

and embedded mode.

 Interactive Mode (Grunt shell) – You can run Apache Pig in interactive mode

using the Grunt shell. In this shell, you can enter the Pig Latin statements and get

the output (using Dump operator).

 Batch Mode (Script) – You can run Apache Pig in Batch mode by writing the Pig

Latin script in a single file with .pig extension.

 Embedded Mode (UDF) – Apache Pig provides the provision of defining our own

functions (User Defined Functions) in programming languages such as Java, and

using them in our script.

Invoking the Grunt Shell

You can invoke the Grunt shell in a desired mode (local/MapReduce) using the –x option

as shown below.

Local mode

MapReduce mode

Command:

$./pig –x local

Command:

$./pig -x mapreduce

4. Apache Pig – Execution

Apache Pig

17

Output:

15/09/28 10:13:03 INFO pig.Main:
Logging error messages to:
/home/Hadoop/pig_1443415383991.log
2015-09-28 10:13:04,838 [main]
INFO
org.apache.pig.backend.hadoop.execution
engine.HExecutionEngine - Connecting to
hadoop file system at: file:///

grunt>

Output:

15/09/28 10:28:46 INFO pig.Main:
Logging error messages to:
/home/Hadoop/pig_1443416326123.log
2015-09-28 10:28:46,427 [main] INFO
org.apache.pig.backend.hadoop.execution
engine.HExecutionEngine - Connecting to
hadoop file system at: file:///

grunt>

Either of these commands gives you the Grunt shell prompt as shown below.

grunt>

You can exit the Grunt shell using ‘ctrl + d’.

After invoking the Grunt shell, you can execute a Pig script by directly entering the Pig

Latin statements in it.

grunt> customers = LOAD 'customers.txt' USING PigStorage(',');

Executing Apache Pig in Batch Mode

You can write an entire Pig Latin script in a file and execute it using the –x command.

Let us suppose we have a Pig script in a file named sample_script.pig as shown below.

Sample_script.pig

student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING

PigStorage(',') as (id:int,name:chararray,city:chararray);

Dump student;

Now, you can execute the script in the above file as shown below.

Local mode

MapReduce mode

$ pig -x local Sample_script.pig

$ pig -x mapreduce Sample_script.pig

Note: We will discuss in detail how to run a Pig script in Bach mode and in embedded

mode in subsequent chapters.

Apache Pig

18

After invoking the Grunt shell, you can run your Pig scripts in the shell. In addition to that,

there are certain useful shell and utility commands provided by the Grunt shell. This

chapter explains the shell and utility commands provided by the Grunt shell.

Note: In some portions of this chapter, the commands like Load and Store are used.

Refer the respective chapters to get in-detail information on them.

Shell Commands

The Grunt shell of Apache Pig is mainly used to write Pig Latin scripts. Prior to that, we

can invoke any shell commands using sh and fs.

sh Command

Using sh command, we can invoke any shell commands from the Grunt shell. Using sh

command from the Grunt shell, we cannot execute the commands that are a part of the

shell environment (ex: cd).

Syntax

Given below is the syntax of sh command.

grunt> sh shell command parameters

Example

We can invoke the ls command of Linux shell from the Grunt shell using the sh option as

shown below. In this example, it lists out the files in the /pig/bin/ directory.

grunt> sh ls

pig

pig_1444799121955.log

pig.cmd

pig.py

5. Grunt Shell

Apache Pig

19

fs Command

Using the fs command, we can invoke any FsShell commands from the Grunt shell.

Syntax

Given below is the syntax of fs command.

grunt> sh File System command parameters

Example

We can invoke the ls command of HDFS from the Grunt shell using fs command.

In the following example, it lists the files in the HDFS root directory.

grunt> fs –ls

Found 3 items

drwxrwxrwx - Hadoop supergroup 0 2015-09-08 14:13 Hbase

drwxr-xr-x - Hadoop supergroup 0 2015-09-09 14:52 seqgen_data

drwxr-xr-x - Hadoop supergroup 0 2015-09-08 11:30 twitter_data

In the same way, we can invoke all the other file system shell commands from the Grunt

shell using the fs command.

Utility Commands

The Grunt shell provides a set of utility commands. These include utility commands such

as clear, help, history, quit, and set; and commands such as exec, kill, and run to

control Pig from the Grunt shell. Given below is the description of the utility commands

provided by the Grunt shell.

clear Command

The clear command is used to clear the screen of the Grunt shell.

Syntax

You can clear the screen of the grunt shell using the clear command as shown below.

grunt> clear

help Command

The help command gives you a list of Pig commands or Pig properties.

Usage

You can get a list of Pig commands using the help command as shown below.

grunt> help

http://pig.apache.org/docs/r0.14.0/cmds.html#fs
http://pig.apache.org/docs/r0.14.0/cmds.html#utillity-cmds
http://pig.apache.org/docs/r0.14.0/cmds.html#clear
http://pig.apache.org/docs/r0.14.0/cmds.html#help

Apache Pig

20

Commands:

<pig latin statement>; - See the PigLatin manual for

details: http://hadoop.apache.org/pig

File system commands:

 fs <fs arguments> - Equivalent to Hadoop dfs command:

 http://hadoop.apache.org/common/docs/current/hdfs_shell.html

Diagnostic Commands:

 describe <alias>[::<alias] - Show the schema for the alias. Inner aliases

can be described as A::B.

 explain [-script <pigscript>] [-out <path>] [-brief] [-dot|-xml] [-param

<param_name>=<pCram_value>]

 [-param_file <file_name>] [<alias>] - Show the execution plan to

compute the alias or for entire script.

 -script - Explain the entire script.

 -out - Store the output into directory rather than print to stdout.

 -brief - Don't expand nested plans (presenting a smaller graph for

overview).

 -dot - Generate the output in .dot format. Default is text format.

 -xml - Generate the output in .xml format. Default is text format.

 -param <param_name - See parameter substitution for details.

 -param_file <file_name> - See parameter substitution for details.

 alias - Alias to explain.

 dump <alias> - Compute the alias and writes the results to stdout.

Utility Commands:

 exec [-param <param_name>=param_value] [-param_file <file_name>] <script>

-

 Execute the script with access to grunt environment including aliases.

 -param <param_name - See parameter substitution for details.

 -param_file <file_name> - See parameter substitution for details.

 script - Script to be executed.

 run [-param <param_name>=param_value] [-param_file <file_name>] <script> -

 Execute the script with access to grunt environment.

 -param <param_name - See parameter substitution for details.

 -param_file <file_name> - See parameter substitution for details.

 script - Script to be executed.

 sh <shell command> - Invoke a shell command.

 kill <job_id> - Kill the hadoop job specified by the hadoop job id.

 set <key> <value> - Provide execution parameters to Pig. Keys and values

are case sensitive.

 The following keys are supported:

 default_parallel - Script-level reduce parallelism. Basic input size

heuristics used by default.

 debug - Set debug on or off. Default is off.

 job.name - Single-quoted name for jobs. Default is PigLatin:<script name>

 job.priority - Priority for jobs. Values: very_low, low, normal, high,

very_high. Default is normal

 stream.skippath - String that contains the path. This is used by streaming

 any hadoop property.

http://hadoop.apache.org/pig
http://hadoop.apache.org/common/docs/current/hdfs_shell.html
http://job.name/

Apache Pig

21

 help - Display this message.

 history [-n] - Display the list statements in cache.

 -n Hide line numbers.

 quit - Quit the grunt shell.

history Command

This command displays a list of statements executed / used so far since the Grunt sell is

invoked.

Usage

Assume we have executed two statements since opening the Grunt shell.

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING

PigStorage(',');

orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING

PigStorage(',');

student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING

PigStorage(',');

Then, using the history command will produce the following output.

grunt> history

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING

PigStorage(',');

orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING

PigStorage(',');

student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING

PigStorage(',');

set Command

The set command is used to show/assign values to keys used in Pig.

http://pig.apache.org/docs/r0.14.0/cmds.html#history

Apache Pig

22

Usage

Using this command, you can set values to the following keys.

Key

Description and values

default_parallel

You can set the number of reducers for a map job by passing any whole

number as a value to this key.

debug

You can turn off or turn on the debugging freature in Pig by passing

on/off to this key.

job.name

You can set the Job name to the required job by passing a string value

to this key.

job.priority

You can set the job priority to a job by passing one of the following

values to this key:

 very_low

 low

 normal

 high

 very_high

stream.skippath

For streaming, you can set the path from where the data is not to be

transferred, by passing the desired path in the form of a string to this

key.

quit Command

You can quit from the Grunt shell using this command.

Usage

Quit from the Grunt shell as shown below.

grunt> quit

Let us now take a look at the commands using which you can control Apache Pig from the

Grunt shell.

exec Command

Using the exec command, we can execute Pig scripts from the Grunt shell.

Syntax

Given below is the syntax of the utility command exec.

http://pig.apache.org/docs/r0.14.0/cmds.html#quit
http://pig.apache.org/docs/r0.14.0/cmds.html#exec

Apache Pig

23

grunt> exec [–param param_name = param_value] [–param_file file_name] [script]

Example

Let us assume there is a file named student.txt in the /pig_data/ directory of HDFS

with the following content.

Student.txt

001,Rajiv,Hyderabad

002,siddarth,Kolkata

003,Rajesh,Delhi

And, assume we have a script file named sample_script.pig in the /pig_data/ directory

of HDFS with the following content.

Sample_script.pig

student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING PigStorage(',

') as (id:int,name:chararray,city:chararray);

Dump student;

Now, let us execute the above script from the Grunt shell using the exec command as

shown below.

grunt> exec /sample_script.pig

Output

The exec command executes the script in the sample_script.pig. As directed in the

script, it loads the student.txt file into Pig and gives you the result of the Dump operator

displaying the following content.

(1,Rajiv,Hyderabad)

(2,siddarth,Kolkata)

(3,Rajesh,Delhi)

kill Command

You can kill a job from the Grunt shell using this command.

Syntax

Given below is the syntax of the kill command.

grunt> kill JobId

Example

Suppose there is a running Pig job having id Id_0055, you can kill it from the Grunt shell

using the kill command, as shown below.

http://pig.apache.org/docs/r0.14.0/cmds.html#kill

Apache Pig

24

grunt> kill Id_0055

run Command

You can run a Pig script from the Grunt shell using the run command.

Syntax

Given below is the syntax of the run command.

grunt> run [–param param_name = param_value] [–param_file file_name] script

Example

Let us assume there is a file named student.txt in the /pig_data/ directory of HDFS

with the following content.

Student.txt

001,Rajiv,Hyderabad

002,siddarth,Kolkata

003,Rajesh,Delhi

And, assume we have a script file named sample_script.pig in the local filesystem with

the following content.

Sample_script.pig

student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING

PigStorage(',') as (id:int,name:chararray,city:chararray);

Now, let us run the above script from the Grunt shell using the run command as shown

below.

grunt> run /sample_script.pig

You can see the output of the script using the Dump operator as shown below.

grunt> Dump;

(1,Rajiv,Hyderabad)

(2,siddarth,Kolkata)

(3,Rajesh,Delhi)

Note: The difference between exec and the run command is that if we use run, the

statements from the script are available in the command history.

http://pig.apache.org/docs/r0.14.0/cmds.html#run

Apache Pig

25

Part 3: Pig Latin

Apache Pig

26

Pig Latin is the language used to analyze data in Hadoop using Apache Pig. In this chapter,

we are going to discuss the basics of Pig Latin such as Pig Latin statements, data types,

general and relational operators, and Pig Latin UDF’s.

Pig Latin – Data Model

As discussed in the previous chapters, the data model of Pig is fully nested. A Relation is

the outermost structure of the Pig Latin data model. And it is a bag where -

 A bag is a collection of tuples.

 A tuple is an ordered set of fields.

 A field is a piece of data.

Pig Latin – Statemets

While processing data using Pig Latin, statements are the basic constructs.

 These statements work with relations. They include expressions and schemas.

 Every statement ends with a semicolon (;).

 We will perform various operations using operators provided by Pig Latin, through

statements.

 Except LOAD and STORE, while performing all other operations, Pig Latin

statements take a relation as input and produce another relation as output.

 As soon as you enter a Load statement in the Grunt shell, its semantic checking

will be carried out. To see the contents of the schema, you need to use the Dump

operator. Only after performing the dump operation, the MapReduce job for

loading the data into the file system will be carried out.

Example

Given below is a Pig Latin statement, which loads data to Apache Pig.

Student_data = LOAD 'student_data.txt' USING PigStorage(',')as (id:int,

firstname:chararray, lastname:chararray, phone:chararray, city:chararray);

6. Pig Latin – Basics

Apache Pig

27

Pig Latin – Data types

Given below table describes the Pig Latin data types.

Data Type

Description and Example

int

Represents a signed 32-bit integer.

Example: 8

long

Represents a signed 64-bit integer.

Example: 5L

float

Represents a signed 32-bit floating point.

Example: 5.5F

double

Represents a 64-bit floating point.

Example: 10.5

chararray

Represents a character array (string) in Unicode UTF-8 format.

Example: ‘tutorials point’

Bytearray

Represents a Byte array (blob).

Boolean

Represents a Boolean value.

Example: true/ false.

Datetime

Represents a date-time.

Example:1970-01-01T00:00:00.000+00:00

Biginteger

Represents a Java BigInteger.

Example: 60708090709

Bigdecimal

Represents a Java BigDecimal

Example: 185.98376256272893883

Complex Types

Tuple

A tuple is an ordered set of fields.

Example: (raja, 30)

Bag

A bag is a collection of tuples.

Example: {(raju,30),(Mohhammad,45)}

Map

A Map is a set of key-value pairs.

Example:[‘name’#’Raju’, ‘age’#30]

Null Values

Values for all the above data types can be NULL. Apache Pig treats null values in a similar

way as SQL does.

A null can be an unknown value or a non-existent value. It is used as a placeholder for

optional values. These nulls can occur naturally or can be the result of an operation.

Apache Pig

28

Pig Latin – Arithmetic Operators

The following table describes the arithmetic operators of Pig Latin. Suppose a=10 and

b=20.

Operator Description Example

+
Addition - Adds values on either side of
the operator

a + b will give 30

-
Subtraction - Subtracts right hand
operand from left hand operand

a - b will give -10

*
Multiplication - Multiplies values on

either side of the operator
a * b will give 200

/
Division – Divides left hand operand by

right hand operand
b / a will give 2

%
Modulus – Divides left hand operand by
right hand operand and returns

remainder

b % a will give 0

? :

Bincond – Evaluates the Boolean

operators. It has three operands as shown

below.

variable x = (expression) ? value1 if

true : value2 if false.

b = (a == 1)? 20: 30;

if a=1 the value of b is 20.

if a!=1 the value of b is 30.

CASE

WHEN

THEN

ELSE END

Case - The case operator is equivalent
to nested bincond operator.

CASE f2 % 2
 WHEN 0 THEN 'even'

 WHEN 1 THEN 'odd'
 END

Pig Latin – Comparison Operators

The following table describes the comparison operators of Pig Latin.

Operator Description Example

==

Equal – Checks if the values of two operands

are equal or not; if yes, then the condition

becomes true.

(a = b) is not true.

!=

Not Equal – Checks if the values of two

operands are equal or not. If the values are not

equal, then condition becomes true.

(a != b) is true.

Apache Pig

29

>

Greater than – Checks if the value of the left

operand is greater than the value of the right

operand. If yes, then the condition becomes

true.

(a > b) is not true.

<

Less than – Checks if the value of the left

operand is less than the value of the right

operand. If yes, then the condition becomes

true.

(a < b) is true.

>=

Greater than or equal to – Checks if the

value of the left operand is greater than or

equal to the value of the right operand. If yes,

then the condition becomes true.

(a >= b) is not true.

<=

Less than or equal to – Checks if the value

of the left operand is less than or equal to the

value of the right operand. If yes, then the

condition becomes true.

(a <= b) is true.

matches

Pattern matching – Checks whether the

string in the left-hand side matches with the

constant in the right-hand side.

f1 matches '.*tutorial.*'

Pig Latin – Type Construction Operators

The following table describes the Type construction operators of Pig Latin.

Operator

Description

Example

()

Tuple constructor operator – This operator is

used to construct a tuple.

(Raju, 30)

{}

Bag constructor operator – This operator is

used to construct a bag.

{(Raju, 30),

(Mohammad, 45)}

[]

Map constructor operator – This operator is

used to construct a tuple.

[name#Raja, age#30]

Pig Latin – Relational Operations

The following table describes the relational operators of Pig Latin.

Operator

Description

Apache Pig

30

Loading and Storing

LOAD

To Load the data from the file system (local/HDFS) into a relation.

STORE

To save a relation to the file system (local/HDFS).

Filtering

FILTER

To remove unwanted rows from a relation.

DISTINCT

To remove duplicate rows from a relation.

FOREACH…

GENERATE:

To generate data transformations based on columns of data.

STREAM

To transform a relation using an external program.

Grouping and Joining

JOIN

To join two or more relations.

COGROUP

To group the data in two or more relations.

GROUP

To group the data in a single relation.

CROSS

To create the cross product of two or more relations.

Sorting

ORDER

To arrange a relation in a sorted order based on one or more fields

(ascending or descending).

LIMIT

To get a limited number of tuples from a relation.

Combining and Splitting

Apache Pig

31

UNION

To combine two or more relations into a single relation.

SPLIT

To split a single relation into two or more relations.

Diagnostic Operators

DUMP

To print the contents of a relation on the console.

DESCRIBE

To describe the schema of a relation.

EXPLAIN

To view the logical, physical, or MapReduce execution plans to compute a

relation.

ILLUSTRATE

To view the step-by-step execution of a series of statements.

http://pig.apache.org/docs/r0.15.0/test.html#describe
http://pig.apache.org/docs/r0.15.0/test.html#explain
http://pig.apache.org/docs/r0.15.0/test.html#illustrate

Apache Pig

32

Part 4: Load and Store Operators

Apache Pig

33

In general, Apache Pig works on top of Hadoop. It is an analytical tool that analyzes large

datasets that exist in the Hadoop File System. To analyze data using Apache Pig, we have

to initially load the data into Apache Pig. This chapter explains how to load data to Apache

Pig from HDFS.

Preparing HDFS

In MapReduce mode, Pig reads (loads) data from HDFS and stores the results back in

HDFS. Therefore, let us start HDFS and create the following sample data in HDFS.

Student ID First Name Last Name Phone City

001 Rajiv Reddy 9848022337 Hyderabad

002 siddarth Battacharya 9848022338 Kolkata

003 Rajesh Khanna 9848022339 Delhi

004 Preethi Agarwal 9848022330 Pune

005 Trupthi Mohanthy 9848022336 Bhuwaneshwar

006 Archana Mishra 9848022335 Chennai

The above dataset contains personal details like id, first name, last name, phone number

and city, of six students.

Step 1: Verifying Hadoop

First of all, verify the installation using Hadoop version command, as shown below.

$ hadoop version

If your system contains Hadoop, and if you have set the PATH variable, then you will get

the following output:

Hadoop 2.6.0

Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r

e3496499ecb8d220fba99dc5ed4c99c8f9e33bb1

Compiled by jenkins on 2014-11-13T21:10Z

Compiled with protoc 2.5.0

From source with checksum 18e43357c8f927c0695f1e9522859d6a

This command was run using /home/Hadoop/hadoop/share/hadoop/common/hadoop-

common-2.6.0.jar

7. Apache Pig -- Reading Data

https://git-wip-us.apache.org/repos/asf/hadoop.git

Apache Pig

34

Step 2: Starting HDFS

Browse through the sbin directory of Hadoop and start yarn and Hadoop dfs (distributed

file system) as shown below.

cd /$Hadoop_Home/sbin/

$ start-dfs.sh

localhost: starting namenode, logging to /home/Hadoop/hadoop/logs/hadoop-

Hadoop-namenode-localhost.localdomain.out

localhost: starting datanode, logging to /home/Hadoop/hadoop/logs/hadoop-

Hadoop-datanode-localhost.localdomain.out

Starting secondary namenodes [0.0.0.0]

starting secondarynamenode, logging to /home/Hadoop/hadoop/logs/hadoop-Hadoop-

secondarynamenode-localhost.localdomain.out

$ start-yarn.sh

starting yarn daemons

starting resourcemanager, logging to /home/Hadoop/hadoop/logs/yarn-Hadoop-

resourcemanager-localhost.localdomain.out

localhost: starting nodemanager, logging to /home/Hadoop/hadoop/logs/yarn-

Hadoop-nodemanager-localhost.localdomain.out

Step 3: Create a Directory in HDFS

In Hadoop DFS, you can create directories using the command mkdir. Create a new

directory in HDFS with the name Pig_Data in the required path as shown below.

$cd /$Hadoop_Home/bin/

$ hdfs dfs -mkdir hdfs://localhost:9000/Pig_Data

Step 4: Placing the data in HDFS

The input file of Pig contains each tuple/record in individual lines. And the entities of the

record are separated by a delimiter (In our example we used “,”).

In the local file system, create an input file student_data.txt containing data as shown

below.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

Apache Pig

35

Now, move the file from the local file system to HDFS using put command as shown below.

(You can use copyFromLocal command as well.)

$ cd $HADOOP_HOME/bin

$ hdfs dfs -put /home/Hadoop/Pig/Pig_Data/student_data.txt

dfs://localhost:9000/pig_data/

Verifying the file

You can use the cat command to verify whether the file has been moved into the HDFS,

as shown below.

$ cd $HADOOP_HOME/bin

$ hdfs dfs -cat hdfs://localhost:9000/pig_data/student_data.txt

Output

You can see the content of the file as shown below.

15/10/01 12:16:55 WARN util.NativeCodeLoader: Unable to load native-hadoop

library for your platform... using builtin-java classes where applicable

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai

The Load Operator

You can load data into Apache Pig from the file system (HDFS/ Local) using LOAD operator

of Pig Latin.

Syntax

The load statement consists of two parts divided by the “=” operator. On the left-hand

side, we need to mention the name of the relation where we want to store the data, and

on the right-hand side, we have to define how we store the data. Given below is the

syntax of the Load operator.

Relation_name = LOAD 'Input file path' USING function as schema;

Where,

 relation_name – We have to mention the relation in which we want to store the

data.

 Input file path – We have to mention the HDFS directory where the file is stored.

(In MapReduce mode)

Apache Pig

36

 function – We have to choose a function from the set of load functions provided

by Apache Pig (BinStorage, JsonLoader, PigStorage, TextLoader). Or, we can

define our own load function.

 Schema – We have to define the schema of the data. We can define the required

schema as follows:

(column1 : data type, column2 : data type, column3 : data type);

Note: We load the data without specifying the schema. In that case, the columns will be

addressed as $01, $02, etc… (check).

Example

As an example, let us load the data in student_data.txt in Pig under the schema named

Student using the LOAD command.

Start the Pig Grunt Shell

First of all, open the Linux terminal. Start the Pig Grunt shell in MapReduce mode as shown

below.

$ Pig –x mapreduce

It will start the Pig Grunt shell as shown below.

15/10/01 12:33:37 INFO pig.ExecTypeProvider: Trying ExecType : LOCAL

15/10/01 12:33:37 INFO pig.ExecTypeProvider: Trying ExecType : MAPREDUCE

15/10/01 12:33:37 INFO pig.ExecTypeProvider: Picked MAPREDUCE as the ExecType

2015-10-01 12:33:38,080 [main] INFO org.apache.pig.Main - Apache Pig version

0.15.0 (r1682971) compiled Jun 01 2015, 11:44:35

2015-10-01 12:33:38,080 [main] INFO org.apache.pig.Main - Logging error

messages to: /home/Hadoop/pig_1443683018078.log

2015-10-01 12:33:38,242 [main] INFO org.apache.pig.impl.util.Utils - Default

bootup file /home/Hadoop/.pigbootup not found

2015-10-01 12:33:39,630 [main]

INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine -

Connecting to hadoop file system at: hdfs://localhost:9000

grunt>

Execute the Load Statement

Now load the data from the file student_data.txt into Pig by executing the following Pig

Latin statement in the Grunt shell.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Apache Pig

37

Following is the description of the above statement.

Relation name

We have stored the data in the schema student.

Input file path

We are reading data from the file student_data.txt, which is in

the /pig_data/ directory of HDFS.

Storage function

We have used the PigStorage() function. It loads and stores data

as structured text files. It takes a delimiter using which each entity of

a tuple is separated, as a parameter. By default, it takes ‘\t’ as a

parameter.

schema

We have stored the data using the following schema.

column

id

firstname

lastname

phone

city

datatype

int

char array

char array

char array

char array

Note: The load statement will simply load the data into the specified relation in Pig. To

verify the execution of the Load statement, you have to use the Diagnostic Operators

which are discussed in the next chapters.

http://pig.apache.org/docs/r0.15.0/test.html#diagnostic-ops

Apache Pig

38

In the previous chapter, we learnt how to load data into Apache Pig. You can store the

loaded data in the file system using the store operator. This chapter explains how to store

data in Apache Pig using the Store operator.

Syntax

Given below is the syntax of the Store statement.

STORE Relation_name INTO ' required_directory_path ' [USING function];

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Now, let us store the relation in the HDFS directory “hdfs://localhost:9000/pig_Output/” as

shown below.

grunt> STORE student INTO ' hdfs://localhost:9000/pig_Output/ ' USING

PigStorage (',');

Output

After executing the store statement, you will get the following output. A directory is

created with the specified name and the data will be stored in it.

2015-10-05 13:05:05,429 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLau

ncher - 100% complete

2015-10-05 13:05:05,429 [main]

INFO org.apache.pig.tools.pigstats.mapreduce.SimplePigStats - Script

Statistics:

HadoopVersion PigVersion UserId StartedAt FinishedAt Features

2.6.0 0.15.0 Hadoop 2015-10-05 13:03:03 2015-10-05

8. Storing Data

Apache Pig

39

13:05:05 UNKNOWN

Success!

Job Stats (time in seconds):

JobId Maps Reduces MaxMapTime MinMapTime AvgMapTime MedianMap

Time MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime

Alias Feature Outputs

job_1443519499159_0006 1 0 n/a n/a n/a n/a 0 0 0

0 student MAP_ONLY hdfs://localhost:9000/pig_Output,

Input(s):

Successfully read 0 records from:

"hdfs://localhost:9000/pig_data/student_data.txt"

Output(s):

Successfully stored 0 records in: "hdfs://localhost:9000/pig_Output"

Counters:

Total records written : 0

Total bytes written : 0

Spillable Memory Manager spill count : 0

Total bags proactively spilled: 0

Total records proactively spilled: 0

Job DAG:

job_1443519499159_0006

2015-10-05 13:06:06,192 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLau

ncher - Success!

Verification

You can verify the stored data as shown below.

Step 1

First of all, list out the files in the directory named pig_output using the ls command as

shown below.

hdfs dfs -ls 'hdfs://localhost:9000/pig_Output/'

Found 2 items

rw-r--r- 1 Hadoop supergroup 0 2015-10-05 13:03

hdfs://localhost:9000/pig_Output/_SUCCESS

rw-r--r- 1 Hadoop supergroup 224 2015-10-05 13:03

hdfs://localhost:9000/pig_Output/part-m-00000

You can observe that two files were created after executing the store statement.

Apache Pig

40

Step 2

Using cat command, list the contents of the file named part-m-00000 as shown below.

$ hdfs dfs -cat 'hdfs://localhost:9000/pig_Output/part-m-00000'

1,Rajiv,Reddy,9848022337,Hyderabad

2,siddarth,Battacharya,9848022338,Kolkata

3,Rajesh,Khanna,9848022339,Delhi

4,Preethi,Agarwal,9848022330,Pune

5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

6,Archana,Mishra,9848022335,Chennai

Apache Pig

41

Part 5: Diagnostic Operators

Apache Pig

42

The load statement will simply load the data into the specified relation in Apache Pig. To

verify the execution of the Load statement, you have to use the Diagnostic Operators.

Pig Latin provides four different types of diagnostic operators:
 Dump operator

 Describe operator

 Explanation operator

 Illustration operator

In this chapter, we will discuss the diagnostic operators of Pig Latin.

Dump Operator

The Dump operator is used to run the Pig Latin statements and display the results on the

screen. It is generally used for debugging Purpose.

Syntax

Given below is the syntax of the Dump operator.

grunt> Dump Relation_Name

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Now, let us print the contents of the relation using the Dump operator as shown below.

grunt> Dump student

Output

9. Diagnostic Operators

http://pig.apache.org/docs/r0.15.0/test.html#diagnostic-ops
http://pig.apache.org/docs/r0.15.0/test.html#diagnostic-ops

Apache Pig

43

Once you execute the above Pig Latin statement, it will start a MapReduce job to read

data from HDFS. It will produce the following output.

2015-10-01 15:05:27,642 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLau

ncher - 100% complete

2015-10-01 15:05:27,652 [main]

INFO org.apache.pig.tools.pigstats.mapreduce.SimplePigStats - Script

Statistics:

HadoopVersion PigVersion UserId StartedAt

 FinishedAt Features

2.6.0 0.15.0 Hadoop 2015-10-01

15:03:11 2015-10-01 05:27 UNKNOWN

Success!

Job Stats (time in seconds):

JobId

Maps

Reduces

MaxMapTime

MinMapTime

AvgMapTime

MedianMapTime

job_14459_0004

1

0

n/a

n/a

n/a

n/a

MaxReduceTime

MinReduceTime

AvgReduceTime

MedianReducetime

Alias

Apache Pig

44

0

0

0

0

student

Feature

Outputs

MAP_ONLY

hdfs://localhost:9000/tmp/temp580182027/tmp757878456,

Input(s):

Successfully read 0 records from:

"hdfs://localhost:9000/pig_data/student_data.txt"

Output(s):

Successfully stored 0 records in:

"hdfs://localhost:9000/tmp/temp580182027/tmp757878456"

Counters:

Total records written : 0

Total bytes written : 0

Spillable Memory Manager spill count : 0

Total bags proactively spilled: 0

Total records proactively spilled: 0

Job DAG:

job_1443519499159_0004

2015-10-01 15:06:28,403 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MapReduceLau

ncher - Success!

2015-10-01 15:06:28,441 [main] INFO org.apache.pig.data.SchemaTupleBackend -

Key [pig.schematuple] was not set... will not generate code.

2015-10-01 15:06:28,485 [main]

INFO org.apache.hadoop.mapreduce.lib.input.FileInputFormat - Total input paths

to process : 1

2015-10-01 15:06:28,485 [main]

INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total

input paths to process : 1

(1,Rajiv,Reddy,9848022337,Hyderabad)

(2,siddarth,Battacharya,9848022338,Kolkata)

(3,Rajesh,Khanna,9848022339,Delhi)

(4,Preethi,Agarwal,9848022330,Pune)

Apache Pig

45

(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)

(6,Archana,Mishra,9848022335,Chennai)

Apache Pig

46

The describe operator is used to view the schema of a relation.

Syntax

The syntax of the describe operator is as follows:

grunt> Describe Relation_name

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Now, let us describe the relation named student and verify the schema as shown below.

grunt> describe student;

Output

Once you execute the above Pig Latin statement, it will produce the following output.

grunt> student: { id: int,firstname: chararray,lastname: chararray,phone:

chararray,city: chararray }

10. Describe Operator

Apache Pig

47

The explain operator is used to display the logical, physical, and MapReduce execution

plans of a relation.

Syntax

Given below is the syntax of the explain operator.

grunt> explain Relation_name;

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Now, let us explain the relation named student using the explain operator as shown

below.

grunt> explain student;

Output

It will produce the following output.

$ explain student;

2015-10-05 11:32:43,660 [main]

INFO org.apache.pig.newplan.logical.optimizer.LogicalPlanOptimizer -

{RULES_ENABLED=[AddForEach, ColumnMapKeyPrune, ConstantCalculator,

GroupByConstParallelSetter, LimitOptimizer, LoadTypeCastInserter, MergeFilter,

MergeForEach, PartitionFilterOptimizer, PredicatePushdownOptimizer,

PushDownForEachFlatten, PushUpFilter, SplitFilter, StreamTypeCastInserter]}

#---

New Logical Plan:

11. Explain Operator

Apache Pig

48

#---

student: (Name: LOStore Schema:

id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#

35:chararray)

|

|---student: (Name: LOForEach Schema:

id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#

35:chararray)

 | |

 | (Name: LOGenerate[false,false,false,false,false] Schema:

id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#

35:chararray)ColumnPrune:InputUids=[34, 35, 32, 33,

31]ColumnPrune:OutputUids=[34, 35, 32, 33, 31]

 | | |

 | | (Name: Cast Type: int Uid: 31)

 | | |

 | | |---id:(Name: Project Type: bytearray Uid: 31 Input: 0 Column: (*))

 | | |

 | | (Name: Cast Type: chararray Uid: 32)

 | | |

 | | |---firstname:(Name: Project Type: bytearray Uid: 32 Input: 1

Column: (*))

 | | |

 | | (Name: Cast Type: chararray Uid: 33)

 | | |

 | | |---lastname:(Name: Project Type: bytearray Uid: 33 Input: 2

Column: (*))

 | | |

 | | (Name: Cast Type: chararray Uid: 34)

 | | |

 | | |---phone:(Name: Project Type: bytearray Uid: 34 Input: 3 Column:

(*))

 | | |

 | | (Name: Cast Type: chararray Uid: 35)

 | | |

 | | |---city:(Name: Project Type: bytearray Uid: 35 Input: 4 Column:

(*))

 | |

 | |---(Name: LOInnerLoad[0] Schema: id#31:bytearray)

 | |

 | |---(Name: LOInnerLoad[1] Schema: firstname#32:bytearray)

 | |

 | |---(Name: LOInnerLoad[2] Schema: lastname#33:bytearray)

 | |

 | |---(Name: LOInnerLoad[3] Schema: phone#34:bytearray)

 | |

 | |---(Name: LOInnerLoad[4] Schema: city#35:bytearray)

 |

 |---student: (Name: LOLoad Schema:

id#31:bytearray,firstname#32:bytearray,lastname#33:bytearray,phone#34:bytearray

,city#35:bytearray)RequiredFields:null

#---

Physical Plan:

#---

Apache Pig

49

student: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-36

|

|---student: New For Each(false,false,false,false,false)[bag] - scope-35

 | |

 | Cast[int] - scope-21

 | |

 | |---Project[bytearray][0] - scope-20

 | |

 | Cast[chararray] - scope-24

 | |

 | |---Project[bytearray][1] - scope-23

 | |

 | Cast[chararray] - scope-27

 | |

 | |---Project[bytearray][2] - scope-26

 | |

 | Cast[chararray] - scope-30

 | |

 | |---Project[bytearray][3] - scope-29

 | |

 | Cast[chararray] - scope-33

 | |

 | |---Project[bytearray][4] - scope-32

 |

 |---student:

Load(hdfs://localhost:9000/pig_data/student_data.txt:PigStorage(',')) - scope-

19

2015-10-05 11:32:43,682 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MRCompiler -

File concatenation threshold: 100 optimistic? false

2015-10-05 11:32:43,684 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOp

timizer - MR plan size before optimization: 1

2015-10-05 11:32:43,685 [main]

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOp

timizer - MR plan size after optimization: 1

#--

Map Reduce Plan

#--

MapReduce node scope-37

Map Plan

student: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-36

|

|---student: New For Each(false,false,false,false,false)[bag] - scope-35

 | |

 | Cast[int] - scope-21

 | |

 | |---Project[bytearray][0] - scope-20

 | |

 | Cast[chararray] - scope-24

 | |

 | |---Project[bytearray][1] - scope-23

 | |

Apache Pig

50

 | Cast[chararray] - scope-27

 | |

 | |---Project[bytearray][2] - scope-26

 | |

 | Cast[chararray] - scope-30

 | |

 | |---Project[bytearray][3] - scope-29

 | |

 | Cast[chararray] - scope-33

 | |

 | |---Project[bytearray][4] - scope-32

 |

 |---student:

Load(hdfs://localhost:9000/pig_data/student_data.txt:PigStorage(',')) - scope-

19--------

Global sort: false

Apache Pig

51

The illustrate operator gives you the step-by-step execution of a sequence of statements.

Syntax

Given below is the syntax of the illustrate operator.

grunt> illustrate Relation_name;

Example

Assume we have a file student_data.txt in HDFS with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

And we have read it into a relation student using the LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Now, let us illustrate the relation named student as shown below.

grunt> illustrate student;

Output

On executing the above statement, you will get the following output.

grunt> illustrate student;

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigMapOnly$M

ap - Aliases being processed per job phase (AliasName[line,offset]): M:

student[1,10] C: R:

| student | id:int | firstname:chararray | lastname:chararray |

phone:chararray | city:chararray |

| | 002 | siddarth |

Battacharya | 9848022338 | Kolkata |

12. Illustrate Command

Apache Pig

52

Part 6: Grouping and Joining

Apache Pig

53

The group operator is used to group the data in one or more relations. It collects the data

having the same key.

Syntax

Given below is the syntax of the group operator.

Group_data = GROUP Relation_name BY age;

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Apache Pig with the schema name student_details as

shown below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray);

Now, let us group the records/tuples in the relation by age as shown below.

grunt> group_data = GROUP student_details by age;

Verification

Verify the relation group_data using the DUMP operator as shown below.

Dump group_data;

13. Group Operator

Apache Pig

54

Output

Then you will get output displaying the contents of the relation named groyp_data as

shown below. Here you can observe that the resulting schema has two columns –

 One is age, by which we have grouped the relation.

 The other is a bag, which contains the group of tuples, student records with the

respective age.

(21,{(4,Preethi,Agarwal,21,9848022330,Pune),(1,Rajiv,Reddy,21,9848022337,Hydera

bad)})

(22,{(3,Rajesh,Khanna,22,9848022339,Delhi),(2,siddarth,Battacharya,22,984802233

8,Kolkata)})

(23,{(6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336

,Bhuwaneshwar)})

(24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334,

trivendram)})

You can see the schema of the table after grouping the data using the describe command

as shown below.

grunt> Describe group_data;

group_data: {group: int,student_details: {(id: int,firstname:

chararray,lastname: chararray,age: int,phone: chararray,city: chararray)}}

In the same way, you can get the sample illustration of the schema using the illustrate

command as shown below.

$ Illustrate group_data;

It will produce the following output:

|group_data | group:int |

|student_details:bag{:tuple(id:int,firstname:chararray,lastname:chararray,age:i

nt,phone:chararray,city:chararray)}|

| | 21 | { 4, Preethi, Agarwal, 21, 9848022330, Pune), (1,

Rajiv, Reddy, 21, 9848022337, Hyderabad)}|

| | 2 | {(2,siddarth,Battacharya,22,9848022338,Kolkata),

(003,Rajesh,Khanna,22,9848022339,Delhi)}|

Grouping by Multiple Columns

Let us group the relation by age and city as shown below.

grunt> group_multiple = GROUP student_details by (age, city);

Apache Pig

55

You can verify the content of the schema named group_multiple using the Dump

operator as shown below.

grunt> Dump group_multiple;

((21,Pune),{(4,Preethi,Agarwal,21,9848022330,Pune)})

((21,Hyderabad),{(1,Rajiv,Reddy,21,9848022337,Hyderabad)})

((22,Delhi),{(3,Rajesh,Khanna,22,9848022339,Delhi)})

((22,Kolkata),{(2,siddarth,Battacharya,22,9848022338,Kolkata)})

((23,Chennai),{(6,Archana,Mishra,23,9848022335,Chennai)})

((23,Bhuwaneshwar),{(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)})

((24,Chennai),{(8,Bharathi,Nambiayar,24,9848022333,Chennai)})

((24,trivendram),{(7,Komal,Nayak,24,9848022334,trivendram)})

Group All

You can group a relation by all the columns as shown below.

grunt> group_all = GROUP student_details All;

Now, verify the content of the schema group_all as shown below.

grunt> Dump group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334

,trivendram),

(6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336,Bhuw

aneshwar),

(4,Preethi,Agarwal,21,9848022330,Pune),(3,Rajesh,Khanna,22,9848022339,Delhi),

(2,siddarth,Battacharya,22,9848022338,Kolkata),(1,Rajiv,Reddy,21,9848022337,Hyd

erabad)})

Apache Pig

56

The cogroup operator works more or less in the same way as the group operator. The

only difference between the two operators is that the group operator is normally used

with one relation, while the cogroup operator is used in statements involving two or more

relations.

Grouping Two Relations using Cogroup

Assume that we have two files namely student_details.txt and employee_details.txt

in the HDFS directory /pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

employee_details.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

And we have loaded these files into Pig with the schema names student_details and

employee_details respectively, as shown below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray);

employee_details = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'

USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

14. Cogroup Operator

Apache Pig

57

Now, let us group the records/tuples of the relations student_details and

employee_details with the key age, as shown below.

grunt> cogroup_data = COGROUP student_details by age, employee_details by age;

Verification

Verify the relation cogroup_data using the DUMP operator as shown below.

Dump cogroup_data;

Output

It will produce the following output, displaying the contents of the relation named details

as shown below.

(21,{(4,Preethi,Agarwal,21,9848022330,Pune),

(1,Rajiv,Reddy,21,9848022337,Hyderabad)},

 { })

(22,{ (3,Rajesh,Khanna,22,9848022339,Delhi),

(2,siddarth,Battacharya,22,9848022338,Kolkata) },

 { (6,Maggy,22,Chennai),(1,Robin,22,newyork) })

(23,{(6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336

,Bhuwaneshwar)},

 {(5,David,23,Bhuwaneshwar),(3,Maya,23,Tokyo),(2,BOB,23,Kolkata)})

(24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334,

trivendram)},

 { })

(25,{ },

 {(4,Sara,25,London)})

The cogroup operator groups the tuples from each schema according to age where each

group depicts a particular age value.

For example, if we consider the 1st tuple of the result, it is grouped by age 21. And it

contains two bags –

 the first bag holds all the tuples from the first schema (student_details in this

case) having age 21, and

 the second bag contains all the tuples from the second schema

(employee_details in this case) having age 21.

In case a schema doesn’t have tuples having the age value 21, it returns an empty bag.

Apache Pig

58

The join operator is used to combine records from two or more relations. While performing

a join operation, we declare one (or a group of) tuple(s) from each relation, as keys. When

these keys match, the two particular tuples are matched, else the records are dropped.

Joins can be of the following types:

 Self-join

 Inner-join

 Outer-join : left join, right join, and full join

This chapter explains with examples how to use the join operator in Pig Latin. Assume

that we have two files namely customers.txt and orders.txt in the /pig_data/

directory of HDFS as shown below.

customers.txt

1,Ramesh,32,Ahmedabad,2000.00

2,Khilan,25,Delhi,1500.00

3,kaushik,23,Kota,2000.00

4,Chaitali,25,Mumbai,6500.00

5,Hardik,27,Bhopal,8500.00

6,Komal,22,MP,4500.00

7,Muffy,24,Indore,10000.00

orders.txt

102,2009-10-08 00:00:00,3,3000

100,2009-10-08 00:00:00,3,1500

101,2009-11-20 00:00:00,2,1560

103,2008-05-20 00:00:00,4,2060

And we have loaded these two files into Pig with the schemas customers and orders as

shown below.

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, address:chararray,

salary:int);

orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING

PigStorage(',')as (oid:int, date:chararray, customer_id:int, amount:int);

Let us now perform various Join operations on these two schemas.

Inner Join

Inner Join is used quite frequently; it is also referred to as equijoin. An inner join returns

rows when there is a match in both tables.

15. Join Operator

Apache Pig

59

It creates a new relation by combining column values of two relations (say A and B) based

upon the join-predicate. The query compares each row of A with each row of B to find all

pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, the

column values for each matched pair of rows of A and B are combined into a result row.

Syntax

Here is the syntax of performing inner join operation using the JOIN operator.

Relation3_name = JOIN Relation1_name BY key, Relation2_name BY key ;

Example

Let us perform inner join operation on the two relations customers and orders as shown

below.

grunt> coustomer_orders = JOIN customers BY id, orders BY customer_id;

Verification

Verify the relation coustomer_orders using the DUMP operator as shown below.

Dump coustomer_orders;

Output

You will get the following output that will the contents of the relation named

coustomer_orders.

(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)

(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)

(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)

(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)

Self - join

Self-join is used to join a table with itself as if the table were two relations, temporarily

renaming at least one relation.

Generally, in Apache Pig, to perform self-join, we will load the same data multiple times,

under different aliases (names). Therefore let us load the contents of the file

customers.txt as two tables as shown below.

customers1 = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, address:chararray,

salary:int);

customers2 = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, address:chararray,

salary:int);

Apache Pig

60

Syntax

Given below is the syntax of performing self-join operation using the JOIN operator.

Relation3_name = JOIN Relation1_name BY key, Relation2_name BY key ;

Example

Let us perform self-join operation on the relation customers, by joining the two relations

customers1 and customers2 as shown below.

grunt> customers3 = JOIN customers1 BY id, customers2 BY id;

Verification

Verify the relation customers3 using the DUMP operator as shown below.

Dump customers3;

Output

It will produce the following output, displaying the contents of the relation customers.

(1,Ramesh,32,Ahmedabad,2000,1,Ramesh,32,Ahmedabad,2000)

(2,Khilan,25,Delhi,1500,2,Khilan,25,Delhi,1500)

(3,kaushik,23,Kota,2000,3,kaushik,23,Kota,2000)

(4,Chaitali,25,Mumbai,6500,4,Chaitali,25,Mumbai,6500)

(5,Hardik,27,Bhopal,8500,5,Hardik,27,Bhopal,8500)

(6,Komal,22,MP,4500,6,Komal,22,MP,4500)

(7,Muffy,24,Indore,10000,7,Muffy,24,Indore,10000)

Outer Join

Unlike inner join, outer join returns all the rows from at least one of the relations. An outer

join operation is carried out in three ways –

 Left outer join

 Right outer join

 Full outer join

Left Outer Join

The left outer Join operation returns all rows from the left table, even if there are no

matches in the right relation.

Syntax

Given below is the syntax of performing left outer join operation using the JOIN

operator.

Apache Pig

61

Relation3_name = JOIN Relation1_name BY id LEFT OUTER, Relation2_name BY

customer_id;

Example

Let us perform left outer join operation on the two relations customers and orders as

shown below.

grunt> outer_left = JOIN customers BY id LEFT OUTER, orders BY customer_id;

Verification

Verify the relation outer_left using the DUMP operator as shown below.

Dump outer_left;

Output

It will produce the following output, displaying the contents of the relation outer_left.

(1,Ramesh,32,Ahmedabad,2000,,,,)

(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)

(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)

(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)

(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)

(5,Hardik,27,Bhopal,8500,,,,)

(6,Komal,22,MP,4500,,,,)

(7,Muffy,24,Indore,10000,,,,)

Right Outer Join

The right outer join operation returns all rows from the right table, even if there are no

matches in the left table.

Syntax

Given below is the syntax of performing right outer join operation using the JOIN

operator.

grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;

Example

Let us perform right outer join operation on the two relations customers and orders

as shown below.

grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;

Apache Pig

62

Verification

Verify the relation outer_right using the DUMP operator as shown below.

grunt> Dump outer_right;

Output

It will produce the following output, displaying the contents of the relation outer_right.

(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)

(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)

(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)

(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)

Full Outer Join

The full outer join operation returns rows when there is a match in one of the relations.

Syntax

Given below is the syntax of performing full outer join using the JOIN operator.

grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;

Example

Let us perform full outer join operation on the two relations customers and orders as

shown below.

grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;

Verification

Verify the relation outer_full using the DUMP operator as shown below.

grunt> Dump outer_full;

Output

It will produce the following output, displaying the contents of the relation outer_full.

(1,Ramesh,32,Ahmedabad,2000,,,,)

(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)

(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)

(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)

(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)

(5,Hardik,27,Bhopal,8500,,,,)

(6,Komal,22,MP,4500,,,,)

(7,Muffy,24,Indore,10000,,,,)

Apache Pig

63

Using Multiple Keys

We can perform JOIN operation using multiple keys.

Syntax

Here is how you can perform a JOIN operation on two tables using multiple keys.

Relation3_name = JOIN Relation2_name BY (key1, key2), Relation3_name BY (key1,

key2);

Assume that we have two files namely employee.txt and employee_contact.txt in the

/pig_data/ directory of HDFS as shown below.

employee.txt

001,Rajiv,Reddy,21,programmer,003

002,siddarth,Battacharya,22,programmer,003

003,Rajesh,Khanna,22,programmer,003

004,Preethi,Agarwal,21,programmer,003

005,Trupthi,Mohanthy,23,programmer,003

006,Archana,Mishra,23,programmer,003

007,Komal,Nayak,24,teamlead,002

008,Bharathi,Nambiayar,24,manager,001

employee_contact.txt

001,9848022337,Rajiv@gmail.com,Hyderabad,003

002,9848022338,siddarth@gmail.com,Kolkata,003

003,9848022339,Rajesh@gmail.com,Delhi,003

004,9848022330,Preethi@gmail.com,Pune,003

005,9848022336,Trupthi@gmail.com,Bhuwaneshwar,003

006,9848022335,Archana@gmail.com,Chennai,003

007,9848022334,Komal@gmail.com,trivendram,002

008,9848022333,Bharathi@gmail.com,Chennai,001

And we have loaded these two files into Pig with schemas employee and

employee_contact as shown below.

employee = LOAD 'hdfs://localhost:9000/pig_data/employee.txt' USING

PigStorage(',')as (id:int, firstname:chararray, lastname:chararray, age:int,

designation:chararray, jobid:int);

employee_contact = LOAD 'hdfs://localhost:9000/pig_data/employee_contact.txt'

USING PigStorage(',')as (id:int, phone:chararray, email:chararray,

city:chararray, jobid:int);

Now, let us join the contents of these two relations using the JOIN operator as shown

below.

emp = JOIN employee BY (id,jobid), employee_contact BY (id,jobid);

mailto:Rajiv@gmail.com
mailto:siddarth@gmail.com
mailto:Rajesh@gmail.com
mailto:Preethi@gmail.com
mailto:Trupthi@gmail.com
mailto:Archana@gmail.com
mailto:Komal@gmail.com
mailto:Bharathi@gmail.com

Apache Pig

64

Verification

Verify the relation emp using the DUMP operator as shown below.

Dump emp;

Output

It will produce the following output, displaying the contents of the relation named emp as

shown below.

(1,Rajiv,Reddy,21,programmer,113,1,9848022337,Rajiv@gmail.com,Hyderabad,113)

(2,siddarth,Battacharya,22,programmer,113,2,9848022338,siddarth@gmail.com,Kolka

ta,113)

(3,Rajesh,Khanna,22,programmer,113,3,9848022339,Rajesh@gmail.com,Delhi,113)

(4,Preethi,Agarwal,21,programmer,113,4,9848022330,Preethi@gmail.com,Pune,113)

(5,Trupthi,Mohanthy,23,programmer,113,5,9848022336,Trupthi@gmail.com,Bhuwaneshw

ar,113)

(6,Archana,Mishra,23,programmer,113,6,9848022335,Archana@gmail.com,Chennai,113)

(7,Komal,Nayak,24,teamlead,112,7,9848022334,Komal@gmail.com,trivendram,112)

(8,Bharathi,Nambiayar,24,manager,111,8,9848022333,Bharathi@gmail.com,Chennai,111)

mailto:Rajiv@gmail.com
mailto:siddarth@gmail.com
mailto:Rajesh@gmail.com
mailto:Preethi@gmail.com
mailto:Trupthi@gmail.com
mailto:Archana@gmail.com
mailto:Komal@gmail.com
mailto:Bharathi@gmail.com

Apache Pig

65

The cross operator computes the cross-product of two or more relations. This chapter

explains with example how to use the cross operator in Pig Latin.

Syntax

Given below is the syntax of the Cross operator.

Relation3_name = CROSS Relation1_name, Relation2_name;

Example

Assume that we have two files namely customers.txt and orders.txt in the

/pig_data/ directory of HDFS as shown below.

customers.txt

1,Ramesh,32,Ahmedabad,2000.00

2,Khilan,25,Delhi,1500.00

3,kaushik,23,Kota,2000.00

4,Chaitali,25,Mumbai,6500.00

5,Hardik,27,Bhopal,8500.00

6,Komal,22,MP,4500.00

7,Muffy,24,Indore,10000.00

orders.txt

102,2009-10-08 00:00:00,3,3000

100,2009-10-08 00:00:00,3,1500

101,2009-11-20 00:00:00,2,1560

103,2008-05-20 00:00:00,4,2060

And we have loaded these two files into Pig with the schemas customers and orders as

shown below.

customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, address:chararray,

salary:int);

orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING

PigStorage(',')as (oid:int, date:chararray, customer_id:int, amount:int);

Let us now get the cross-product of these two schemas using the cross operator on these

two schemas as shown below.

cross_data = CROSS customers, orders;

16. Cross Operator

Apache Pig

66

Verification

Verify the relation cross_data using the DUMP operator as shown below.

Dump cross_data;

Output

It will produce the following output, displaying the contents of the relation cross_data.

(7,Muffy,24,Indore,10000,103,2008-05-20 00:00:00,4,2060)

(7,Muffy,24,Indore,10000,101,2009-11-20 00:00:00,2,1560)

(7,Muffy,24,Indore,10000,100,2009-10-08 00:00:00,3,1500)

(7,Muffy,24,Indore,10000,102,2009-10-08 00:00:00,3,3000)

(6,Komal,22,MP,4500,103,2008-05-20 00:00:00,4,2060)

(6,Komal,22,MP,4500,101,2009-11-20 00:00:00,2,1560)

(6,Komal,22,MP,4500,100,2009-10-08 00:00:00,3,1500)

(6,Komal,22,MP,4500,102,2009-10-08 00:00:00,3,3000)

(5,Hardik,27,Bhopal,8500,103,2008-05-20 00:00:00,4,2060)

(5,Hardik,27,Bhopal,8500,101,2009-11-20 00:00:00,2,1560)

(5,Hardik,27,Bhopal,8500,100,2009-10-08 00:00:00,3,1500)

(5,Hardik,27,Bhopal,8500,102,2009-10-08 00:00:00,3,3000)

(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)

(4,Chaitali,25,Mumbai,6500,101,2009-20 00:00:00,4,2060)

(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)

(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)

(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)

(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060)

(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560)

(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500)

(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)-11-20 00:00:00,2,1560)

(4,Chaitali,25,Mumbai,6500,100,2009-10-08 00:00:00,3,1500)

(4,Chaitali,25,Mumbai,6500,102,2009-10-08 00:00:00,3,3000)

(3,kaushik,23,Kota,2000,103,2008-05-20 00:00:00,4,2060)

(3,kaushik,23,Kota,2000,101,2009-11-20 00:00:00,2,1560)

(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)

(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)

(2,Khilan,25,Delhi,1500,103,2008-05-20 00:00:00,4,2060)

(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)

(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)

Apache Pig

67

(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)

(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060)

(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560)

(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500)

(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)

Apache Pig

68

Part 7: Combining and Splitting

Apache Pig

69

The UNION operator of Pig Latin is used to merge the content of two relations. To perform

UNION operation on two relations, their columns and domains must be identical.

Syntax

Given below is the syntax of the UNION operator.

grunt> Relation_name3 = UNION Relation_name1, Relation_name2;

Example

Assume that we have two files namely student_data1.txt and student_data2.txt in the

/pig_data/ directory of HDFS as shown below.

Student_data1.txt

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

Student_data2.txt

7,Komal,Nayak,9848022334,trivendram.

8,Bharathi,Nambiayar,9848022333,Chennai.

And we have loaded these two files into Pig with the schemas student1 and student2 as

shown below.

student1 = LOAD 'hdfs://localhost:9000/pig_data/student_data1.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

student2 = LOAD 'hdfs://localhost:9000/pig_data/student_data2.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Let us now merge the contents of these two relations using the UNION operator as shown

below.

student = UNION student1, student2;

17. Union Operator

Apache Pig

70

Verification

Verify the relation student using the DUMP operator as shown below.

Dump student;

Output

It will display the following output, displaying the contents of the relation student.

(1,Rajiv,Reddy,9848022337,Hyderabad)

(2,siddarth,Battacharya,9848022338,Kolkata)

(3,Rajesh,Khanna,9848022339,Delhi)

(4,Preethi,Agarwal,9848022330,Pune)

(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)

(6,Archana,Mishra,9848022335,Chennai)

(7,Komal,Nayak,9848022334,trivendram)

(8,Bharathi,Nambiayar,9848022333,Chennai)

Apache Pig

71

The Split operator is used to split a relation into two or more relations.

Syntax

Given below is the syntax of the SPLIT operator.

grunt> SPLIT Relation1_name INTO Relation2_name IF (condition1), Relation2_name

(condition2),

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown

below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray);

Let us now split the relation into two, one listing the employees of age less than 23, and

the other listing the employees having the age between 22 and 25.

SPLIT student_details into student_details1 if age<23, student_details2 if

(22<age and age<25);

18. Split Operator

Apache Pig

72

Verification

Verify the relations student_details1 and student_details2 using the DUMP operator

as shown below.

Dump student_details1;

Dump student_details2;

Output

It will produce the following output, displaying the contents of the relations

student_details1 and student_details2 respectively.

Dump student_details1;

(1,Rajiv,Reddy,21,9848022337,Hyderabad)

(2,siddarth,Battacharya,22,9848022338,Kolkata)

(3,Rajesh,Khanna,22,9848022339,Delhi)

(4,Preethi,Agarwal,21,9848022330,Pune)

Dump student_details2;

(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)

(6,Archana,Mishra,23,9848022335,Chennai)

(7,Komal,Nayak,24,9848022334,trivendram)

(8,Bharathi,Nambiayar,24,9848022333,Chennai)

Apache Pig

73

Part 8: Filtering

Apache Pig

74

The filter operator is used to select the required tuples from a relation based on a

condition.

Syntax

Given below is the syntax of the FILTER operator.

grunt> Relation2_name = FILTER Relation1_name BY (condition);

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown

below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray);

Let us now use the Filter operator to get the details of the students who belong to the

city Chennai.

filter_data = FILTER student_details BY city == 'Chennai';

Verification

Verify the relation filter_data using the DUMP operator as shown below.

Dump filter_data;

19. Filter Operator

Apache Pig

75

Output

It will produce the following output, displaying the contents of the relation filter_data as

follows.

(6,Archana,Mishra,23,9848022335,Chennai)

(8,Bharathi,Nambiayar,24,9848022333,Chennai)

Apache Pig

76

The Distinct operator is used to remove redundant (duplicate) tuples from a relation.

Syntax

Given below is the syntax of the DISTINCT operator.

grunt> Relation_name2 = DISTINCT Relatin_name1;

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai

006,Archana,Mishra,9848022335,Chennai

And we have loaded this file into Pig with the schema name student_details as shown

below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

Let us now remove the redundant (duplicate) tuples from the relation named

student_details using the DISTINCT operator, and store it as another relation named

data as shown below.

distinct_data = DISTINCT student_details;

Verification

Verify the relation distinct_data using the DUMP operator as shown below.

Dump distinct_data;

20. Distinct Operator

Apache Pig

77

Output

It will produce the following output, displaying the contents of the relation distinct_data

as follows.

(1,Rajiv,Reddy,9848022337,Hyderabad)

(2,siddarth,Battacharya,9848022338,Kolkata)

(3,Rajesh,Khanna,9848022339,Delhi)

(4,Preethi,Agarwal,9848022330,Pune)

(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)

(6,Archana,Mishra,9848022335,Chennai)

Apache Pig

78

The FOREACH operator is used to generate specified data transformations based on the

column data.

Syntax

Given below is the syntax of foreach operator.

grunt> Relation_name2 = FOREACH Relatin_name1 GENERATE (required data);

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown

below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray,

lastname:chararray,age:int, phone:chararray, city:chararray);

Let us now get the id, age, and city values of each student from the relation

student_details and store it into another relation named data using the foreach

operator as shown below.

foreach_data = FOREACH student_details GENERATE id,age,city;

Verification

Verify the relation foreach_data using the DUMP operator as shown below.

Dump foreach_data;

21. Foreach Operator

Apache Pig

79

Output

It will produce the following output, displaying the contents of the relation foreach_data.

(1,21,Hyderabad)

(2,22,Kolkata)

(3,22,Delhi)

(4,21,Pune)

(5,23,Bhuwaneshwar)

(6,23,Chennai)

(7,24,trivendram)

(8,24,Chennai)

Apache Pig

80

Part 9: Sorting

Apache Pig

81

The ORDER BY operator is used to display the contents of a relation in a sorted order based

on one or more fields.

Syntax

Given below is the syntax of the ORDER BY operator.

grunt> Relation_name2 = ORDER Relatin_name1 BY (ASC|DESC);

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown

below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray,

lastname:chararray,age:int, phone:chararray, city:chararray);

Let us now sort the relation in a descending order based on the age of the student and

store it into another relation named data using the ORDER BY operator as shown below.

order_by_data = ORDER student_details BY age DESC;

Verification

Verify the relation order_by_data using the DUMP operator as shown below.

Dump order_by_data;

22. Order By

Apache Pig

82

Output

It will produce the following output, displaying the contents of the relation

order_by_data.

(8,Bharathi,Nambiayar,24,9848022333,Chennai)

(7,Komal,Nayak,24,9848022334,trivendram)

(6,Archana,Mishra,23,9848022335,Chennai)

(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)

(3,Rajesh,Khanna,22,9848022339,Delhi)

(2,siddarth,Battacharya,22,9848022338,Kolkata)

(4,Preethi,Agarwal,21,9848022330,Pune)

(1,Rajiv,Reddy,21,9848022337,Hyderabad)

Apache Pig

83

The LIMIT operator is used to get a limited number of tuples from a relation.

Syntax

Given below is the syntax of the LIMIT operator.

grunt> Result = LIMIT Relation_name required number of tuples;

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have loaded this file into Pig with the schema name student_details as shown

below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt'

USING PigStorage(',')as (id:int, firstname:chararray,

lastname:chararray,age:int, phone:chararray, city:chararray);

Now, let’s sort the relation in descending order based on the age of the student and store

it into another relation named limit_data using the ORDER BY operator as shown below.

limit_data = LIMIT student_details 4;

Verification

Verify the relation limit_data using the DUMP operator as shown below.

Dump limit_data;

23. Limit Operator

Apache Pig

84

Output

It will produce the following output, displaying the contents of the relation limit_data as

follows.

(1,Rajiv,Reddy,21,9848022337,Hyderabad)

(2,siddarth,Battacharya,22,9848022338,Kolkata)

(3,Rajesh,Khanna,22,9848022339,Delhi)

(4,Preethi,Agarwal,21,9848022330,Pune)

Apache Pig

85

Part 10: Pig Latin Built-in Functions

Apache Pig

86

Apache Pig provides various built-in functions namely eval, load/store, math, string,

bag and tuple functions.

Eval Functions

Given below is the list of eval functions provided by Apache Pig.

Function

Description

AVG

To compute the average of the numerical values within a bag.

BagToString

To concatenate the elements of a bag into a string. While

concatenating, we can place a delimiter between these values

(optional).

CONCAT

To concatenate two or more expressions of same type.

COUNT
To get the number of elements in a bag, while counting the number

of tuples in a bag.

COUNT_STAR
It is similar to the COUNT() function. It is used to get the number of

elements in a bag.

DIFF To compare two bags (fields) in a tuple.

IsEmpty To check if a bag or map is empty.

MAX
To calculate the highest value for a column (numeric values or

chararrays) in a single-column bag.

MIN
To get the minimum (lowest) value (numeric or chararray) for a

certain column in a single-column bag.

PluckTuple

Using the Pig Latin PluckTuple() function, we can define a string

Prefix and filter the columns in a relation that begin with the given

prefix.

SIZE To compute the number of elements based on any Pig data type.

24. Eval Functions

Apache Pig

87

SUBTRACT
To subtract two bags. It takes two bags as inputs and returns a bag

which contains the tuples of the first bag that are not in the second

bag.

SUM
To get the total of the numeric values of a column in a single-column

bag.

TOKENIZE

To split a string (which contains a group of words) in a single tuple

and return a bag which contains the output of the split operation.

AVG

The Pig-Latin AVG() function is used to compute the average of the numerical values

within a bag. While calculating the average value, the AVG() function ignores the NULL

values.

Note:

 To get the global average value, we need to perform a Group All operation, and

calculate the average value using the AVG function.

 To get the average value of a group, we need to group it using the Group By

operator and proceed with the average function.

Syntax

Given below is the syntax of the AVG function.

grunt> AVG(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad,89

002,siddarth,Battacharya,22,9848022338,Kolkata,78

003,Rajesh,Khanna,22,9848022339,Delhi,90

004,Preethi,Agarwal,21,9848022330,Pune,93

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75

006,Archana,Mishra,23,9848022335,Chennai,87

007,Komal,Nayak,24,9848022334,trivendram,83

008,Bharathi,Nambiayar,24,9848022333,Chennai,72

Apache Pig

88

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Average GPA

We can use the built-in function AVG (case-sensitive) to calculate the average of a set of

numerical values. Let’s group the schema student_details using the Group All operator,

and store the result in the schema named student_group_all as shown below.

grunt> student_group_all = Group student_details All;

This will produce a schema as shown below.

grunt> Dump student_group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72),(7,Komal,Nayak,24,9848022

334,trivendram,83),(6,Archana,Mishra,23,9848022335,Chennai,87),(5,Trupthi,Mohan

thy,23,9848022336,Bhuwaneshwar,75),(4,Preethi,Agarwal,21,9848022330,Pune,93),(3

,Rajesh,Khanna,22,9848022339,Delhi,90),(2,siddarth,Battacharya,22,9848022338,Ko

lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate the global average GPA of all the students using the AVG function as

shown below.

grunt> student_gpa_avg = foreach student_group_all Generate

(student_details.firstname, student_details.gpa), AVG(student_details.gpa);

Verification

Verify the relation student_gpa_avg using the DUMP operator as shown below.

grunt> Dump student_gpa_avg;

Output

It will display the contents of the relation student_gpa_avg as follows.

(({(Bharathi),(Komal),(Archana),(Trupthi),(Preethi),(Rajesh),(siddarth),(Rajiv)

},

 { (72) , (83) , (87) , (75) , (93) , (90) , (78) ,

(89) }),83.375)

Max

The Pig Latin Max() function is used to calculate the highest value for a column (numeric

values or chararrays) in a single-column bag. While calculating the maximum value, the

Max() function ignores the NULL values.

Apache Pig

89

Note:

 To get the global maximum value, we need to perform a Group All operation, and

calculate the average value using the AVG function.

 To get the maximum value of a group, we need to group it using the Group By

operator and proceed with the average function.

Syntax

Given below is the syntax of the Max() function.

grunt> Max(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad,89

002,siddarth,Battacharya,22,9848022338,Kolkata,78

003,Rajesh,Khanna,22,9848022339,Delhi,90

004,Preethi,Agarwal,21,9848022330,Pune,93

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75

006,Archana,Mishra,23,9848022335,Chennai,87

007,Komal,Nayak,24,9848022334,trivendram,83

008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Maximum GPA

We can use the built-in function MAX (case-sensitive) to calculate the maximum value

from a set of given numerical values. Let us group the schema student_details using the

Group All operator, and store the result in the schema named student_group_all as

shown below.

grunt> student_group_all = Group student_details All;

This will produce a schema as shown below.

grunt> Dump student_group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72),(7,Komal,Nayak,24,9848022

334,trivendram,83),(6,Archana,Mishra,23,9848022335,Chennai,87),(5,Trupthi,Mohan

thy,23,9848022336,Bhuwaneshwar,75),(4,Preethi,Agarwal,21,9848022330,Pune,93),(3

Apache Pig

90

,Rajesh,Khanna,22,9848022339,Delhi,90),(2,siddarth,Battacharya,22,9848022338,Ko

lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate the global maximum of GPA, i.e., maximum among the GPA values

of all the students using the MAX function as shown below.

grunt> student_gpa_max = foreach student_group_all Generate

(student_details.firstname, student_details.gpa), MAX(student_details.gpa);

Verification

Verify the relation student_gpa_max using the DUMP operator as shown below.

grunt> Dump student_gpa_max;

Output

It will produce the following output, displaying the contents of the relation

student_gpa_max.

(({(Bharathi),(Komal),(Archana),(Trupthi),(Preethi),(Rajesh),(siddarth),(Rajiv)

} ,

 { (72) , (83) , (87) , (75) , (93) , (90) ,

(78) , (89) }) ,93)

Min

The Min() function of Pig Latin is used to get the minimum (lowest) value (numeric or

chararray) for a certain column in a single-column bag. While calculating the minimum

value, the Min() function ignores the NULL values.

Note:

 To get the global minimum value, we need to perform a Group All operation, and

calculate the average value using the AVG function.

 To get the minimum value of a group, we need to group it using the Group By

operator and proceed with the average function.

Syntax

Given below is the syntax of the Min() function.

grunt> MIN(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

Apache Pig

91

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad,89

002,siddarth,Battacharya,22,9848022338,Kolkata,78

003,Rajesh,Khanna,22,9848022339,Delhi,90

004,Preethi,Agarwal,21,9848022330,Pune,93

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75

006,Archana,Mishra,23,9848022335,Chennai,87

007,Komal,Nayak,24,9848022334,trivendram,83

008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema named student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Minimum GPA

We can use the built-in function MIN() (case sensitive) to calculate the minimum value

from a set of given numerical values. Let us group the schema student_details using the

Group All operator, and store the result in the schema named student_group_all as

shown below.

grunt> student_group_all = Group student_details All;

It will produce a schema as shown below.

grunt> Dump student_group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72),(7,Komal,Nayak,24,9848022

334,trivendram,83),(6,Archana,Mishra,23,9848022335,Chennai,87),(5,Trupthi,Mohan

thy,23,9848022336,Bhuwaneshwar,75),(4,Preethi,Agarwal,21,9848022330,Pune,93),(3

,Rajesh,Khanna,22,9848022339,Delhi,90),(2,siddarth,Battacharya,22,9848022338,Ko

lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate the global minimum of GPA, i.e., minimum among the GPA values of

all the students using the MIN function as shown below.

grunt> student_gpa_min = foreach student_group_all Generate

(student_details.firstname, student_details.gpa), MIN(student_details.gpa);

Verification

Verify the relation student_gpa_min using the DUMP operator as shown below.

grunt> Dump student_gpa_min;

Apache Pig

92

Output

It will produce the following output, displaying the contents of the relation

student_gpa_min.

(({(Bharathi),(Komal),(Archana),(Trupthi),(Preethi),(Rajesh),(siddarth),(Rajiv)

} ,

 { (72) , (83) , (87) , (75) , (93) , (90) ,

(78) , (89) }) ,72)

Count

The count() function of Pig Latin is used to get the number of elements in a bag. While

counting the number of tuples in a bag, the count() function ignores (will not count) the

tuples having a NULL value in the FIRST FIELD.

Note:

 To get the global count value (total number of tuples in a bag), we need to perform

a Group All operation, and calculate the average value using the AVG function.

 To get the count value of a group (Number of tuples in a group), we need to group

it using the Group By operator and proceed with the average function.

Syntax

Given below is the syntax of the count() function.

grunt> COUNT(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad,89

002,siddarth,Battacharya,22,9848022338,Kolkata,78

003,Rajesh,Khanna,22,9848022339,Delhi,90

004,Preethi,Agarwal,21,9848022330,Pune,93

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75

006,Archana,Mishra,23,9848022335,Chennai,87

007,Komal,Nayak,24,9848022334,trivendram,83

008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema named student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray, gpa:int);

Apache Pig

93

Calculating the Number of Tuples

We can use the built-in function COUNT() (case sensitive) to calculate the number of

tuples in a relation. Let us group the schema student_details using the Group All

operator, and store the result in the schema named student_group_all as shown below.

grunt> student_group_all = Group student_details All;

It will produce a schema as shown below.

grunt> Dump student_group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72),(7,Komal,Nayak,24,9848022

334,trivendram,83),(6,Archana,Mishra,23,9848022335,Chennai,87),(5,Trupthi,Mohan

thy,23,9848022336,Bhuwaneshwar,75),(4,Preethi,Agarwal,21,9848022330,Pune,93),(3

,Rajesh,Khanna,22,9848022339,Delhi,90),(2,siddarth,Battacharya,22,9848022338,Ko

lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)})

Let us now calculate number of tuples/records in the relation.

grunt> student_count = foreach student_group_all Generate

COUNT(student_details.gpa);

Verification

Verify the relation student_count using the DUMP operator as shown below.

grunt> Dump student_count;

Output

It will produce the following output, displaying the contents of the relation

student_count.

8

COUNT_STAR

The COUNT_STAR() function of Pig Latin is similar to the COUNT() function. It is used

to get the number of elements in a bag. While counting the elements, the COUNT_STAR()

function includes the NULL values.

Note:

 To get the global count value (total number of tuples in a bag), we need to perform

a Group All operation, and calculate the average value using the AVG function.

 To get the count value of a group (Number of tuples in a group), we need to group

it using the Group By operator and proceed with the average function.

Apache Pig

94

Syntax

Given below is the syntax of the COUNT_STAR function.

grunt> COUNT_STAR(expression)

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below. This file contains an empty record.

student_details.txt

, , , , , , ,

001,Rajiv,Reddy,21,9848022337,Hyderabad,89

002,siddarth,Battacharya,22,9848022338,Kolkata,78

003,Rajesh,Khanna,22,9848022339,Delhi,90

004,Preethi,Agarwal,21,9848022330,Pune,93

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75

006,Archana,Mishra,23,9848022335,Chennai,87

007,Komal,Nayak,24,9848022334,trivendram,83

008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray, gpa:int);

Calculating the Number of Tuples

We can use the built-in function COUNT_STAR() to calculate the number of tuples in a

relation. Let us group the schema student_details using the Group All operator, and

store the result in the schema named student_group_all as shown below.

grunt> student_group_all = Group student_details All;

It will produce a schema as shown below.

grunt> Dump student_group_all;

(all,{(8,Bharathi,Nambiayar,24,9848022333,Chennai,72),(7,Komal,Nayak,24,9848022

334,trivendram,83),(6,Archana,Mishra,23,9848022335,Chennai,87),(5,Trupthi,Mohan

thy,23,9848022336,Bhuwaneshwar,75),(4,Preethi,Agarwal,21,9848022330,Pune,93),(3

,Rajesh,Khanna,22,9848022339,Delhi,90),(2,siddarth,Battacharya,22,9848022338,Ko

lkata,78),(1,Rajiv,Reddy,21,9848022337,Hyderabad,89),(, , , , , ,)})

Apache Pig

95

Let us now calculate the number of tuples/records in the relation.

grunt> student_count = foreach student_group_all Generate

COUNT_STAR(student_details.gpa);

Verification

Verify the relation student_count using the DUMP operator as shown below.

grunt> Dump student_count;

Output

It will produce the following output, displaying the contents of the relation

student_count.

9

Since we have used the function COUNT_STAR, it included the null tuple and returned 9.

Sum

You can use the Sum() function of Pig Latin to get the total of the numeric values of a

column in a single-column bag. While computing the total, the sum() function ignores the

NULL values.

Note:

 To get the global sum value, we need to perform a Group All operation, and

calculate the average value using the AVG function.

 To get the sum value of a group, we need to group it using the Group By operator

and proceed with the average function.

Syntax

Given below is the syntax of the sum() function.

grunt> SUM(expression)

Example

Assume that we have a file named employee.txt in the HDFS directory /pig_data/ as

shown below.

employee.txt

1,John,2007-01-24,250

2,Ram,2007-05-27,220

3,Jack,2007-05-06,170

3,Jack,2007-04-06,100

Apache Pig

96

4,Jill,2007-04-06,220

5,Zara,2007-06-06,300

5,Zara,2007-02-06,350

And we have loaded this file into Pig with the schema name employee_data as shown

below.

grunt> employee_data = LOAD 'hdfs://localhost:9000/pig_data/ employee.txt'

USING PigStorage(',')as (id:int, name:chararray, workdate:chararray,

daily_typing_pages:int);

Calculating the Sum of All GPA

To demonstrate the SUM() function, let’s try to calculate the total number of pages typed

daily of all the employees. We can use the Apache Pig’s built-in function SUM() (case

sensitive) to calculate the sum of the numerical values. Let us group the schema

employee_data using the Group All operator, and store the result in the schema named

employee_group as shown below.

grunt> employee_group = Group employee_data all;

It will produce a schema as shown below.

grunt> Dump employee_group;

(all,{(5,Zara,2007-02-06,350),(5,Zara,2007-06-06,300),(4,Jill,2007-04-

06,220),(3,Jack,2007-04-06,100),(3,Jack,2007-05-06,170),(2,Ram,2007-05-

27,220),(1,John,2007-01-24,250)})

Let us now calculate the global sum of the pages typed daily.

grunt> student_workpages_sum = foreach employee_group Generate

(employee_data.name,employee_data.daily_typing_pages),SUM(employee_data.daily_t

yping_pages);

Verification

Verify the relation student_workpages_sum using the DUMP operator as shown below.

grunt> Dump student_workpages_sum;

Output

It will produce the following output, displaying the contents of the relation

student_workpages_sum as follows.

(({ (Zara), (Zara), (Jill) ,(Jack) , (Jack) , (Ram) , (John) },

 { (350) , (300) , (220) ,(100) , (170) , (220) , (250) }),1610)

http://employee_data.name/

Apache Pig

97

DIFF

The DIFF() function of Pig Latin is used to compare two bags (fields) in a tuple. It takes

two fields of a tuple as input and matches them. If they match, it returns an empty bag.

If they do not match, it finds the elements that exist in one filed (bag) and not found in

the other, and returns these elements by wrapping them within a bag.

Syntax

Given below is the syntax of the DIFF() function.

grunt> DIFF (expression, expression)

Example

Generally the Diff() function compares two bags in a tuple. Given below is an example of

the DIFF() function. Here we consider two schemas, cogroup them, and perform DIFF()

function on them.

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS

directory /pig_data/ as shown below. The emp_sales.txt contains the details of the

employees of the sales department and the emp_bonus.txt contains the employee details

who got bonus.

emp_sales.txt

1,Robin,22,25000,sales

2,BOB,23,30000,sales

3,Maya,23,25000,sales

4,Sara,25,40000,sales

5,David,23,45000,sales

6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales

2,Jaya,23,20000,admin

3,Maya,23,25000,sales

4,Alia,25,50000,admin

5,David,23,45000,sales

6,Omar,30,30000,admin

And we have loaded these files into Pig, with the schema names emp_sales and

emp_bonus respectively.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

Apache Pig

98

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

Group the records/tuples of the relations emp_sales and emp_bonus with the key sno,

using the COGROUP operator as shown below.

cogroup_data = COGROUP emp_sales by sno, emp_bonus by sno;

Verify the relation details using the DUMP operator as shown below.

grunt> Dump cogroup_data;

(1,{(1,Robin,22,25000,sales)},{(1,Robin,22,15000,sales)})

(2,{(2,BOB,23,30000,sales)},{(2,Jaya,23,12000,admin)})

(3,{(3,Maya,23,25000,sales)},{(3,Maya,23,10000,sales)})

(4,{(4,Sara,25,40000,sales)},{(4,Alia,25,8000,admin)})

(5,{(5,David,23,45000,sales)},{(5,David,23,6000,sales)})

(6,{(6,Maggy,22,35000,sales)},{(6,Omar,30,3000,admin)})

Calculating the Difference between Two Schemas

Let us now calculate the difference between the two schemas using DIFF() function and

store it in the schema diff_data as shown below.

diff_data = FOREACH cogroup_data GENERATE DIFF(emp_sales,emp_bonus);

Verification

Verify the schema diff_data using the DUMP operator as shown below.

Dump diff_data;

({})

({(2,BOB,23,30000,sales),(2,Jaya,23,20000,admin)})

({})

({(4,Sara,25,40000,sales),(4,Alia,25,50000,admin)})

({})

({(6,Maggy,22,35000,sales),(6,Omar,30,30000,admin)})

The diff_data schema will have an empty tuple if the records in emp_bonus and

emp_sales match. In other cases, it will hold tuples from both the schemas (tuples that

differ).

For example, if you consider the records having sno as 1, then you will find them same in

both the schemas ((1,Robin,22,25000,sales), (1,Robin,22,15000,sales)). Therefore,

Apache Pig

99

in the diff_data schema, which is the result of DIFF() function, you will get an empty

tuple for sno 1.

SUBTRACT

The subtract() function of Pig Latin is used to subtract two bags. It takes two bags as

inputs and returns a bag which contains the tuples of the first bag that are not in the

second bag.

Syntax

Given below is the syntax of the subtract() function.

SUBTRACT(expression, expression)

Example

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS

directory /pig_data/ as shown below. The emp_sales.txt contains the details of the

employees of the sales department and the emp_bonus.txt contains the employee details

who got bonus.

emp_sales.txt

1,Robin,22,25000,sales

2,BOB,23,30000,sales

3,Maya,23,25000,sales

4,Sara,25,40000,sales

5,David,23,45000,sales

6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales

2,Jaya,23,20000,admin

3,Maya,23,25000,sales

4,Alia,25,50000,admin

5,David,23,45000,sales

6,Omar,30,30000,admin

And we have loaded these files into Pig, with the schema names emp_sales and

emp_bonus respectively.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

Apache Pig

100

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

Let us now group the records/tuples of the relations emp_sales and emp_bonus with

the key sno, using the COGROUP operator as shown below.

cogroup_data = COGROUP emp_sales by sno, emp_bonus by sno;

Verify the relation details using the DUMP operator as shown below.

grunt> Dump cogroup_data;

(1,{(1,Robin,22,25000,sales)},{(1,Robin,22,15000,sales)})

(2,{(2,BOB,23,30000,sales)},{(2,Jaya,23,12000,admin)})

(3,{(3,Maya,23,25000,sales)},{(3,Maya,23,10000,sales)})

(4,{(4,Sara,25,40000,sales)},{(4,Alia,25,8000,admin)})

(5,{(5,David,23,45000,sales)},{(5,David,23,6000,sales)})

(6,{(6,Maggy,22,35000,sales)},{(6,Omar,30,3000,admin)})

Subtracting One Schema from the Other

Let us now subtract the tuples of emp_bonus schema from emp_sales schema. The

resulting schema holds the tuples of emp_sales that are not there in emp_bonus.

sub_data = FOREACH cogroup_data GENERATE SUBTRACT(emp_sales, emp_bonus);

Verification

Verify the schema sub_data using the DUMP operator as shown below. The emp_sales

schema holds the tuples that are not there in the schema emp_bonus.

Dump sub_data;

({})

({(2,BOB,23,30000,sales)})

({})

({(4,Sara,25,40000,sales)})

({})

({(6,Maggy,22,35000,sales)})

In the same way, let us subtract the emp_sales schema from emp_bonus schema as

shown below.

sub_data = FOREACH cogroup_data GENERATE SUBTRACT(emp_bonus, emp_sales);

Apache Pig

101

Verify the contents of the sub_data schema using the Dump operator as shown below.

({})

({(2,Jaya,23,20000,admin)})

({})

({(4,Alia,25,50000,admin)})

({})

({(6,Omar,30,30000,admin)})000,admin)})

IsEmpty

The isEmpty() function of Pig Latin is used to check if a bag or map is empty.

Syntax

Given below is the syntax of the IsEmpty() function.

IsEmpty(expression)

Example

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS

directory /pig_data/ as shown below. The emp_sales.txt contains the details of the

employees of the sales department and the emp_bonus.txt contains the employee details

who got bonus.

emp_sales.txt

1,Robin,22,25000,sales

2,BOB,23,30000,sales

3,Maya,23,25000,sales

4,Sara,25,40000,sales

5,David,23,45000,sales

6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales

2,Jaya,23,20000,admin

3,Maya,23,25000,sales

4,Alia,25,50000,admin

5,David,23,45000,sales

6,Omar,30,30000,admin

Apache Pig

102

And we have loaded these files into Pig, with the schema names emp_sales and

emp_bonus respectively, as shown below.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

Let us now group the records/tuples of the relations emp_sales and emp_bonus with

the key age, using the cogroup operator as shown below.

cogroup_data = COGROUP emp_sales by sno, emp_bonus by age;

Verify the relation cogroup_data using the DUMP operator as shown below.

grunt> Dump cogroup_data;

(22,{(6,Maggy,22,35000,sales),(1,Robin,22,25000,sales)},

 {(1,Robin,22,25000,sales)})

(23,{(5,David,23,45000,sales),(3,Maya,23,25000,sales),(2,BOB,23,30000,sales)},

{(5,David,23,45000,sales),(3,Maya,23,25000,sales),(2,Jaya,23,20000,admin)})

(25,{(4,Sara,25,40000,sales)},{(4,Alia,25,50000,admin)})

(30,{},{(6,Omar,30,30000,admin)})

The COGROUP operator groups the tuples from each schema according to age. Each group

depicts a particular age value.

For example, if we consider the 1st tuple of the result, it is grouped by age 22. And it

contains two bags, the first bag holds all the tuples from the first schema (student_details

in this case) having age 22, and the second bag contains all the tuples from the second

schema (employee_details in this case) having age 22. In case a schema doesn’t have

tuples having the age value 22, it returns an empty bag.

Getting the Groups having Empty Bags

Let’s list such empty bags from the emp_sales schema in the group using the IsEmpty()

function.

isempty_data = filter cogroup_data by IsEmpty(emp_sales);

Apache Pig

103

Verification

Verify the schema isempty_data using the DUMP operator as shown below. The

emp_sales schema holds the tuples that are not there in the schema emp_bonus.

Dump isempty_data;

(30,{},{(6,Omar,30,30000,admin)})

Pluck Tuple

After performing operations like join to differentiate the columns of the two schemas, we

use the function PluckTuple(). To use this function, first of all, we have to define a string

Prefix and we have to filter for the columns in a relation that begin with that prefix.

Syntax

Given below is the syntax of the PluckTuple() function.

DEFINE pluck PluckTuple(expression1)

DEFINE pluck PluckTuple(expression1,expression3)

pluck(expression2)

Example

Assume that we have two files namely emp_sales.txt and emp_bonus.txt in the HDFS

directory /pig_data/. The emp_sales.txt contains the details of the employees of the

sales department and the emp_bonus.txt contains the employee details who got bonus.

emp_sales.txt

1,Robin,22,25000,sales

2,BOB,23,30000,sales

3,Maya,23,25000,sales

4,Sara,25,40000,sales

5,David,23,45000,sales

6,Maggy,22,35000,sales

emp_bonus.txt

1,Robin,22,25000,sales

2,Jaya,23,20000,admin

3,Maya,23,25000,sales

4,Alia,25,50000,admin

5,David,23,45000,sales

Apache Pig

104

6,Omar,30,30000,admin

And we have loaded these files into Pig, with the schema names emp_sales and

emp_bonus respectively.

emp_sales = LOAD 'hdfs://localhost:9000/pig_data/emp_sales.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

emp_bonus = LOAD 'hdfs://localhost:9000/pig_data/emp_bonus.txt' USING

PigStorage(',')as (sno:int, name:chararray, age:int, salary:int,

dept:chararray);

Join these two schemas using the join operator as shown below.

join_data = join emp_sales by sno, emp_bonus by sno;

Verify the schema join_data using the Dump operator.

grunt> Dump join_data;

(1,Robin,22,25000,sales,1,Robin,22,25000,sales)

(2,BOB,23,30000,sales,2,Jaya,23,20000,admin)

(3,Maya,23,25000,sales,3,Maya,23,25000,sales)

(4,Sara,25,40000,sales,4,Alia,25,50000,admin)

(5,David,23,45000,sales,5,David,23,45000,sales)

(6,Maggy,22,35000,sales,6,Omar,30,30000,admin)

Using PluckTuple() Function

Now, define the required expression by which you want to differentiate the columns using

PluckTupe() function.

DEFINE pluck PluckTuple('a::');

Filter the columns in the join_data relation as shown below.

data = foreach test generate FLATTEN(pluck(*));

Verify the schema of the join_data schema using the describe operator.

Describe test;

test: {emp_sales::sno: int,emp_sales::name: chararray,emp_sales::age:

int,emp_sales::salary: int,emp_sales::dept: chararray,emp_bonus::sno:

int,emp_bonus::name: chararray,emp_bonus::age: int,emp_bonus::salary:

int,emp_bonus::dept: chararray}

Since we have defined the expression as “a::”, the columns of the emp_sales schema

are plucked as emp_sales::column name and the columns of the emp_bonus schema

are plucked as emp_bonus::column name

Apache Pig

105

Size ()

The size() function of Pig Latin is used to compute the number of elements based on any

Pig data type.

Syntax

Given below is the syntax of the size() function.

SIZE(expression)

The return values vary according to the data types in Apache Pig.

Data type

Value

int, long, float, double

For all these types, the size function returns 1.

Char array

For a char array, the size() function returns the number of

characters in the array.

Byte array

For a bytearray, the size() function returns the number of

bytes in the array.

Tuple

For a tuple, the size() function returns number of fields in the

tuple.

Bag

For a bag, the size() function returns number of tuples in the

bag.

Map

For a map, the size() function returns the number of

key/value pairs in the map.

Example

Assume that we have a file named employee.txt in the HDFS directory /pig_data/ as

shown below.

employee.txt

1,John,2007-01-24,250

2,Ram,2007-05-27,220

3,Jack,2007-05-06,170

3,Jack,2007-04-06,100

4,Jill,2007-04-06,220

5,Zara,2007-06-06,300

5,Zara,2007-02-06,350

Apache Pig

106

And we have loaded this file into Pig with the schema name employee_data as shown

below.

grunt> employee_data = LOAD 'hdfs://localhost:9000/pig_data/ employee.txt'

USING PigStorage(',')as (id:int, name:chararray, workdate:chararray,

daily_typing_pages:int);

Calculating the Size of the Type

To calculate the size of the type of a particular column, we can use the size() function.

Let’s calculate the size of the name type as shown below.

grunt> size = FOREACH employee_data GENERATE SIZE(name);

Verification

Verify the relation size using the DUMP operator as shown below.

grunt> Dump size;

Output

It will produce the following output, displaying the contents of the relation size as follows.

In the example, we have calculated the size of the name column. Since it is of varchar

type, the size function gives you the number of characters in the name of each employee.

(4)

(3)

(4)

(4)

(4)

(4)

(4)

BagToString ()

The Pig Latin BagToString() function is used to concatenate the elements of a bag into

a string. While concatenating, we can place a delimiter between these values (optional).

Generally bags are disordered and we can order them by using the ORDER BY operator.

Syntax

Given below is the syntax of the BagToString() function.

BagToString(vals:bag [, delimiter:chararray])

Example

Assume that we have a file named dateofbirth.txt in the HDFS directory /pig_data/ as

shown below. This file contains the date-of-births.

Apache Pig

107

employee.txt

22,3,1990

23,11,1989

1,3,1998

2,6,1980

26,9,1989

And we have loaded this file into Pig with the schema name dob as shown below.

grunt> dob = LOAD 'hdfs://localhost:9000/pig_data/dob.txt' USING

PigStorage(',')as (day:int, month:int, year:int);

Converting Bag to String

Using the bagtostring() function, we can convert the data in the bag to string. Let us

group the dob schema. The group operation will produce a bag containing all the tuples

of the schema.

Group the schema dob using the Group All operator, and store the result in the schema

named group_dob as shown below.

grunt> group_dob = Group dob all;

It will produce a schema as shown below.

grunt> Dump group_dob;

(all,{(26,9,1989),(2,6,1980),(1,3,1998),(23,11,1989),(22,3,1990)})

Here, we can observe a bag having all the date-of-births as tuples of it. Now, let’s convert

the bag to string using the function BagToString().

grunt> dob_string = foreach group_dob Generate BagToString(dob);

Verification

Verify the relation student_workpages_sum using the DUMP operator as shown below.

grunt> Dump dob_string;

Output

It will produce the following output, displaying the contents of the relation

student_workpages_sum.

(26_9_1989_2_6_1980_1_3_1998_23_11_1989_22_3_1990)

Apache Pig

108

Concat ()

The CONCAT() function of Pig Latin is used to concatenate two or more expressions of

the same type.

Syntax

CONCAT (expression, expression, [...expression])

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad,89

002,siddarth,Battacharya,22,9848022338,Kolkata,78

003,Rajesh,Khanna,22,9848022339,Delhi,90

004,Preethi,Agarwal,21,9848022330,Pune,93

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75

006,Archana,Mishra,23,9848022335,Chennai,87

007,Komal,Nayak,24,9848022334,trivendram,83

008,Bharathi,Nambiayar,24,9848022333,Chennai,72

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

age:int, phone:chararray, city:chararray, gpa:int);

Concatenating Two Strings

We can use the concat() function to concatenate two or more expressions. First of all,
verify the contents of the student_details schema using the Dump operator as shown

below.

grunt> Dump student_details;

(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)

(2,siddarth,Battacharya,22,9848022338,Kolkata,78)

(3,Rajesh,Khanna,22,9848022339,Delhi,90)

(4,Preethi,Agarwal,21,9848022330,Pune,93)

(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75)

(6,Archana,Mishra,23,9848022335,Chennai,87)

(7,Komal,Nayak,24,9848022334,trivendram,83)

(8,Bharathi,Nambiayar,24,9848022333,Chennai,72)

Apache Pig

109

And, verify the schema using describe operator as shown below.

grunt> Describe student_details;

student_details: {id: int, firstname: chararray, lastname: chararray, age: int,

phone: chararray, city: chararray, gpa: int}

In the above schema, you can observe that the name of the student is represented using

two chararray values namely firstname and lastname. Let us concatinate these two

values using the CONCAT() function.

grunt> student_name_concat = foreach student_group_all Generate CONCAT

(firstname, lastname);

Verification

Verify the relation student_name_concat using the DUMP operator as shown below.

grunt> Dump student_name_concat;

Output

It will produce the following output, displaying the contents of the relation

student_name_concat.

(RajivReddy)

(siddarthBattacharya)

(RajeshKhanna)

(PreethiAgarwal)

(TrupthiMohanthy)

(ArchanaMishra)

(KomalNayak)

(BharathiNambiayar)

We can also use an optional delimiter between the two expressions as shown below.

CONCAT(firstname, '_',lastname);

Now, let us concatenate the first name and last name of the student records in the

student_details schema by placing ‘_’ between them as shown below.

grunt> student_name_concat = foreach student_gpa GENERATE CONCAT(firstname,

'_',lastname);

grunt> Dump student_name_concat;

Apache Pig

110

Verification

Verify the relation student_name_concat using the DUMP operator as shown below.

grunt> Dump student_name_concat;

Output

It will produce the following output, displaying the contents of the relation

student_name_concat as follows.

(Rajiv_Reddy)

(siddarth_Battacharya)

(Rajesh_Khanna)

(Preethi_Agarwal)

(Trupthi_Mohanthy)

(Archana_Mishra)

(Komal_Nayak)

(Bharathi_Nambiayar)

Tokenize ()

The Tokenize function of Pig Latin is used to split a string (which contains a group of

words) in a single tuple and return a bag which contains the output of the split operation.

Syntax

Given below is the syntax of the Tokenize operation.

TOKENIZE(expression [, 'field_delimiter'])

As a delimeter to the tokenize function, we can pass space [], double quote [" "], coma

[,], parenthesis [()], star [*].

Example

Assume that we have a file named student_details.txt in the HDFS directory

/pig_data/ as shown below.

student_details.txt

001,Rajiv_Reddy,21,Hyderabad

002,siddarth_Battacharya,22,Kolkata

003,Rajesh_Khanna,22,Delhi

004,Preethi_Agarwal,21,Pune

005,Trupthi_Mohanthy,23,Bhuwaneshwar

006,Archana_Mishra,23 ,Chennai

007,Komal_Nayak,24,trivendram

008,Bharathi_Nambiayar,24,Chennai

Apache Pig

111

And we have loaded this file into Pig with the schema name student as shown below.

grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'

USING PigStorage(',')as (id:int, firstname:chararray, age:int,

city:chararray);

Tokenizing a String

We can use the Tokenize() function to split a string. First of all, verify the contents of

the student_details schema using the Dump operator as shown below.

grunt> Dump student_details;

(1,Rajiv,Reddy,21,9848022337,Hyderabad,89)

(2,siddarth,Battacharya,22,9848022338,Kolkata,78)

(3,Rajesh,Khanna,22,9848022339,Delhi,90)

(4,Preethi,Agarwal,21,9848022330,Pune,93)

(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar,75)

(6,Archana,Mishra,23,9848022335,Chennai,87)

(7,Komal,Nayak,24,9848022334,trivendram,83)

(8,Bharathi,Nambiayar,24,9848022333,Chennai,72)

And, verify the schema using describe operator as shown below.

grunt> Describe student_details;

student_details: {id: int, firstname: chararray, lastname: chararray, age: int,

phone: chararray, city: chararray, gpa: int}

In the above schema, you can observe that the name of the student is represented using

two chararray values namely firstname and lastname. Let us concatinate these two

values using the concat() function as shown below.

grunt> student_name_concat = foreach student_group_all Generate CONCAT

(firstname, lastname);

Verification

Verify the relation student_name_concat using the DUMP operator as shown below.

grunt> Dump student_name_concat;

Output

It will produce the following output, displaying the contents of the relation

student_name_concat as follows.

(RajivReddy)

(siddarthBattacharya)

(RajeshKhanna)

Apache Pig

112

(PreethiAgarwal)

(TrupthiMohanthy)

(ArchanaMishra)

(KomalNayak)

(BharathiNambiayar)

Apache Pig

113

The load/store functions in Apache Pig are used to determine how the data goes ad comes

out of Pig. These functions are used with the load and store operators. Given below is

the list of load and store functions available in Pig.

Function

Description

PigStorage

To load and store structured files.

TextLoader

To load unstructured data into Pig.

BinStorage

To load and store data into Pig using machine readable

format.

Handling Compression

In Pig Latin, we can load and store compressed data.

PigStorage ()

The PigStorage function loads and stores data as structured text files. It takes a delimiter

using which each entity of a tuple is separated as a parameter. By default, it takes ‘\t’ as

a parameter.

Syntax

Given below is the syntax of the PigStorage() function.

PigStorage(field_delimiter)

Example

Let us suppose we have a file named student_data.txt in the HDFS directory named

/data/ with the following content.

001,Rajiv,Reddy,9848022337,Hyderabad

002,siddarth,Battacharya,9848022338,Kolkata

003,Rajesh,Khanna,9848022339,Delhi

004,Preethi,Agarwal,9848022330,Pune

005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar

006,Archana,Mishra,9848022335,Chennai.

25. Load and Store Functions

Apache Pig

114

We can load the data using the PigStorage function as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

In the above example, we have seen that we have used comma (‘,’) delimiter. Therefore,

we have separated the values of a record using (,).

In the same way, we can use the PigStorage() function to store the data in to HDFS

directory as shown below.

STORE student INTO ' hdfs://localhost:9000/pig_Output/ ' USING PigStorage

(',');

This will store the data into the given directory. You can verify the data as shown below.

Verification

You can verify the stored data as shown below. First of all, list out the files in the directory

named pig_output using ls command as shown below.

hdfs dfs -ls 'hdfs://localhost:9000/pig_Output/'

 Found 2 items

 rw-r--r- 1 Hadoop supergroup 0 2015-10-05 13:03

hdfs://localhost:9000/pig_Output/_SUCCESS

 rw-r--r- 1 Hadoop supergroup 224 2015-10-05 13:03

hdfs://localhost:9000/pig_Output/part-m-00000

You can observe that two files were created after executing the Store statement.

Then, using the cat command, list the contents of the file named part-m-00000 as shown

below.

$ hdfs dfs -cat 'hdfs://localhost:9000/pig_Output/part-m-00000'

1,Rajiv,Reddy,9848022337,Hyderabad

2,siddarth,Battacharya,9848022338,Kolkata

3,Rajesh,Khanna,9848022339,Delhi

4,Preethi,Agarwal,9848022330,Pune

5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar 6,Archana,Mishra,9848022335,Chennai

TextLoader ()

The Pig Latin function TextLoader() is a Load function which is used to load unstructured

data in UTF-8 format.

Apache Pig

115

Syntax

Given below is the syntax of TextLoader() function.

TextLoader()

Example

Let us assume there is a file with named stu_data.txt in the HDFS directory named

/data/ as shown below.

001,Rajiv_Reddy,21,Hyderabad

002,siddarth_Battacharya,22,Kolkata

003,Rajesh_Khanna,22,Delhi

004,Preethi_Agarwal,21,Pune

005,Trupthi_Mohanthy,23,Bhuwaneshwar

006,Archana_Mishra,23,Chennai

007,Komal_Nayak,24,trivendram

008,Bharathi_Nambiayar,24,Chennai

Now let us load the above file using the TextLoader() function.

grunt> details = LOAD 'hdfs://localhost:9000/pig_data/stu_data.txt' USING

TextLoader();

You can verify the loaded data using the Dump operator.

grunt> dump;

(001,Rajiv_Reddy,21,Hyderabad)

(002,siddarth_Battacharya,22,Kolkata)

(003,Rajesh_Khanna,22,Delhi)

(004,Preethi_Agarwal,21,Pune)

(005,Trupthi_Mohanthy,23,Bhuwaneshwar)

(006,Archana_Mishra,23,Chennai)

(007,Komal_Nayak,24,trivendram)

(008,Bharathi_Nambiayar,24,Chennai)

BinStorage ()

The BinStorage() function is used to load and store the data into Pig using machine

readable format. BinStorge() in Pig is generally used to store temporary data generated

between the MapReduce jobs. It supports multiple locations as input.

Apache Pig

116

Syntax

Given below is the syntax of the BinStorage() function.

BinStorage();

Example

Assume that we have a file named stu_data.txt in the HDFS directory /pig_data/ as

shown below.

Stu_data.txt

001,Rajiv_Reddy,21,Hyderabad

002,siddarth_Battacharya,22,Kolkata

003,Rajesh_Khanna,22,Delhi

004,Preethi_Agarwal,21,Pune

005,Trupthi_Mohanthy,23,Bhuwaneshwar

006,Archana_Mishra,23,Chennai

007,Komal_Nayak,24,trivendram

008,Bharathi_Nambiayar,24,Chennai

Let us load this data into Pig into a schema as shown below.

student_details = LOAD 'hdfs://localhost:9000/pig_data/stu_data.txt' USING

PigStorage(',')as (id:int, firstname:chararray, age:int, city:chararray);

Now, we can store this schema into the HDFS directory named /pig_data/ using the

BinStorage() function.

STORE student_details INTO 'hdfs://localhost:9000/pig_Output/mydata' USING

BinStorage();

After executing the above statement, the schema is stored in the given HDFS directory.

You can verify it using the HDFS cat command as shown below.

[Hadoop@localhost sbin]$ hdfs dfs -ls hdfs://localhost:9000/pig_Output/mydata/

Found 2 items

-rw-r--r-- 1 Hadoop supergroup 0 2015-10-26 16:58

hdfs://localhost:9000/pig_Output/mydata/_SUCCESS

-rw-r--r-- 1 Hadoop supergroup 372 2015-10-26 16:58

hdfs://localhost:9000/pig_Output/mydata/part-m-00000

Apache Pig

117

Now, load the data from the file part-m-00000.

result = LOAD 'hdfs://localhost:9000/pig_Output/b/part-m-00000' USING

BinStorage();

Verify the contents of the schema as shown below.

Dump result;

(1,Rajiv_Reddy,21,Hyderabad)

(2,siddarth_Battacharya,22,Kolkata)

(3,Rajesh_Khanna,22,Delhi)

(4,Preethi_Agarwal,21,Pune)

(5,Trupthi_Mohanthy,23,Bhuwaneshwar)

(6,Archana_Mishra,23,Chennai)

(7,Komal_Nayak,24,trivendram)

(8,Bharathi_Nambiayar,24,Chennai)

Handling Compression

We can load/store compressed data in Apache Pig using the functions BinStorage() and

TextLoader().

Example

Assume we have a file named employee.txt.zip in the HDFS directory /pigdata/. Then,

we can load the compressed file into pig as shown below.

Using PigStorage:

grunt > data = LOAD 'hdfs://localhost:9000/pig_data/employee.txt.zip' USING

PigStorage(',');

Using TextLoader:

grunt > data = LOAD 'hdfs://localhost:9000/pig_data/employee.txt.zip' USING

TextLoader;

In the same way, we can store the compressed files into pig as shown below.

Using PigStorage:

grunt> store data INTO 'hdfs://localhost:9000/pig_Output/data.bz' USING

PigStorage(',');

http://data.bz/

Apache Pig

118

Given below is the list of Bag and Tuple functions.

Function

Description

TOBAG

To convert two or more expressions into a bag.

TOP

To get the top N tuples of a relation.

TOTUPLE

To convert one or more expressions into a tuple.

TOMAP

To convert the key-value pairs into a Map.

TOBAG ()

The TOBAG() function of Pig Latin converts one or more expressions to individual tuples.

And these tuples are placed in a bag.

Syntax

Given below is the syntax of the TOBAG() function.

TOBAG(expression [, expression ...])

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,

with the following content.

employee_details.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'

USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

26. Bag and Tuple Functions

Apache Pig

119

Let us now convert the id, name, age and city, of each student (record) into a tuple as

shown below.

tobag = FOREACH emp_data GENERATE TOBAG (id,name,age,city);

Verification

You can verify the contents of the tobag schema using the Dump operator as shown

below.

DUMP tobag;

({(1),(Robin),(22),(newyork)})

({(2),(BOB),(23),(Kolkata)})

({(3),(Maya),(23),(Tokyo)})

({(4),(Sara),(25),(London)})

({(5),(David),(23),(Bhuwaneshwar)})

({(6),(Maggy),(22),(Chennai)})

TOP ()

The TOP() function of Pig Latin is used to get the top N tuples of a bag. To this function,

as inputs, we have to pass a relation, the number of tuples we want, and the column name

whose values are being compared. This function will return a bag containing the required

columns.

Syntax

Given below is the syntax of the function TOP().

TOP(topN,column,relation)

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,

with the following content.

employee_details.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

Apache Pig

120

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/ employee_details.txt'

USING PigStorage(',') as (id:int, name:chararray, age:int, city:chararray);

Group the schema emp_data by age, and store it in the schema emp_group.

emp_group = Group emp_data BY age;

Verify the schema emp_group using the Dump operator as shown below.

Dump emp_group;

(22,{(12,Kelly,22,Chennai),(7,Robert,22,newyork),(6,Maggy,22,Chennai),(1,Robin,

22,newyork)})

(23,{(8,Syam,23,Kolkata),(5,David,23,Bhuwaneshwar),(3,Maya,23,Tokyo),(2,BOB,23,

Kolkata)})

(25,{(11,Stacy,25,Bhuwaneshwar),(10,Saran,25,London),(9,Mary,25,Tokyo),(4,Sara,

25,London)})

Now, you can get the top two records of each group arranged in ascending order (based

on id) as shown below.

data_top = FOREACH emp_group {

top = TOP(2, 0, emp_data);

GENERATE top;

}

Verification

You can verify the contents of the data_top schema using the Dump operator as shown

below.

Dump data_top;

({(7,Robert,22,newyork),(12,Kelly,22,Chennai)})

({(5,David,23,Bhuwaneshwar),(8,Syam,23,Kolkata)})

({(10,Saran,25,London),(11,Stacy,25,Bhuwaneshwar)})

Apache Pig

121

TOTUPLE ()

The TOTUPLE() function is used convert one or more expressions to the data type tuple.

Syntax

Given below is the syntax of the TOTUPLE() function.

TOTUPLE(expression [, expression ...])

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,

with the following content.

employee_details.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'

USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Let us now convert the id, name and age of each student (record) into a tuple.

totuple = FOREACH emp_data GENERATE TOTUPLE (id,name,age);

Verification

You can verify the contents of the totuple schema using the Dump operator as shown

below.

DUMP totuple;

((1,Robin,22))

((2,BOB,23))

((3,Maya,23))

((4,Sara,25))

((5,David,23))

((6,Maggy,22))

Apache Pig

122

TOMAP ()

The TOMAP() function of Pig Latin is used to convert the key-value pairs into a Map.

Syntax

Given below is the syntax of the TOMAP() function.

TOMAP(key-expression, value-expression [, key-expression, value-

expression ...])

Example

Assume we have a file named employee_details.txt in the HDFS directory /pig_data/,

with the following content.

employee_details.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

We have loaded the file into the Pig schema with the name emp_data as shown below.

grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt'

USING PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Let us now take the name and age of each record as key-value pairs and convert them

into map as shown below.

tomap = FOREACH emp_data GENERATE TOMAP(name, age);

Verification

You can verify the contents of the tomap schema using the Dump operator as shown

below.

DUMP tomap;

([Robin#22])

([BOB#23])

([Maya#23])

([Sara#25])

([David#23])

([Maggy#22])

Apache Pig

123

We have the following String functions in Apache Pig.

27. String Functions

Operator

Description

ENDSWITH

ENDSWITH(string, testAgainst)

To verify whether a given string ends with a particular substring.

STARTSWITH

STARTSWITH(string, substring)

Accepts two string parameters and verifies whether the first string

starts with the second.

SUBSTRING

SUBSTRING(string, startIndex, stopIndex)

Returns a substring from a given string.

EqualsIgnoreCase

EqualsIgnoreCase(string1, string2)

To compare two stings ignoring the case.

INDEXOF

INDEXOF(string, ‘character’, startIndex)

Returns the first occurrence of a character in a string, searching

forward from a start index.

LAST_INDEX_OF

LAST_INDEX_OF(expression)

Returns the index of the last occurrence of a character in a string,

searching backward from a start index.

LCFIRST

LCFIRST(expression)

Converts the first character in a string to lower case.

UCFIRST

UCFIRST(expression)

Returns a string with the first character converted to upper case.

UPPER

UPPER(expression)

Returns a string converted to upper case.

Apache Pig

124

STARTSWITH ()

This function accepts two string parameters. It verifies whether the first string starts with

the second.

Syntax

Given below is the syntax of the STARTSWITH() function.

STARTSWITH(string, substring)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

LOWER

LOWER(expression)

Converts all characters in a string to lower case.

REPLACE

REPLACE(string, ‘oldChar’, ‘newChar’);

To replace existing characters in a string with new characters.

STRSPLIT

STRSPLIT(string, regex, limit)

To split a string around matches of a given regular expression.

SPLITTOBAG

SPLITTOBAG(string, regex, limit)

Similar to the STRSPLIT() function, it splits the string by given

delimiter and returns the result in a bag.

TRIM

TRIM(expression)

Returns a copy of a string with leading and trailing whitespaces

removed.

LTRIM

LTRIM(expression)

Returns a copy of a string with leading whitespaces removed.

RTRIM

RTRIM(expression)

Returns a copy of a string with trailing whitespaces removed.

Apache Pig

125

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Example

Following is an example of the STARTSWITH() function. In this example, we have verified

whether the names of all the employees start with the substring “Ro”.

grunt> startswith_data = FOREACH emp_data GENERATE (id,name), STARTSWITH

(name,’Ro’);

The above statement parses the names of all the employees if any of these names starts

with the substring ‘Ro’. Since the names of the employees ‘Robin’ and ‘Robert’ starts

with the substring ‘Ro’ for these two tuples the STARTSWITH() function returns the

Boolean value ‘true’ and for remaining tuples the value will be ‘false’.

The result of the statement will be stored in the schema named startswith_data. Verify

the content of the schema startswith_data, using the Dump operator as shown below.

Dump startswith_data;

((1,Robin),true)

((2,BOB),false)

((3,Maya),false)

((4,Sara),false)

((5,David),false)

((6,maggy),false)

((7,Robert),true)

((8,Syam),false)

((9,Mary),false)

((10,Saran),false)

((11,Stacy),false)

((12,Kelly),false)

Apache Pig

126

ENDSWITH

This function accepts two String parameters, it is used to verify whether the first string

ends with the second string.

Syntax

ENDSWITH(string1, string2)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name age and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of ENDSWITH() function, in this example we are verifying,

weather the name of every employee ends with the character n.

grunt> emp_endswith = FOREACH emp_data GENERATE (id,name),ENDSWITH (name,

'n');

The above statement verifies weather the name of the employee ends with the letter n.

Since the names of the employees Saran and Robin ends with the letter n for these two

tuples ENDSWITH() function returns the Boolean value ‘true’ and for remaining tuples the

value will be ‘false’.

The result of the statement will be stored in the schema named emp_endswith. Verify

the content of the schema emp_endswith, using the Dump operator as shown below.

grunt> Dump emp_endswith;

Apache Pig

127

((1,Robin),true)

((2,BOB),false)

((3,Maya),false)

((4,Sara),false)

((5,David),false)

((6,Maggy),false)

((7,Robert),false)

((8,Syam),false)

((9,Mary),false)

((10,Saran),true)

((11,Stacy),false)

((12,Kelly),false)

SUBSTRING

This function returns a substring from the given string.

Syntax

Given below is the syntax of the SUBSTRING() function. This function accepts three

parameters one is the column name of the string we want. And the other two are the

start and stop indexes of the substring we want from the string.

SUBSTRING(string, startIndex, stopIndex)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name age and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the SUBSTRING() function. In this example we have verified

weather the names of all the employees starts with the substring “Ro”.

Apache Pig

128

grunt> substring_data = FOREACH emp_data GENERATE (id,name), STARTSWITH

(name,’Ro’);

The above statement parses the names of all the employees if any of these names starts

with the substring ‘Ro’. Since the names of the employees ‘Robin’ and ‘Robert’ starts

with the substring ‘Ro’ for these two tuples the STARTSWITH() function returns the

Boolean value ‘true’ and for remaining tuples the value will be ‘false’.

The result of the statement will be stored in the schema named startswith_data. Verify

the content of the schema startswith_data, using the Dump operator as shown below.

Dump startswith_data;

((1,Robin),true)

((2,BOB),false)

((3,Maya),false)

((4,Sara),false)

((5,David),false)

((6,maggy),false)

((7,Robert),true)

((8,Syam),false)

((9,Mary),false)

((10,Saran),false)

((11,Stacy),false)

((12,Kelly),false)

EqualsIgnoreCase

The EqualsIgnoreCase() function is used to compare two strings and verify whether

they are equal. If both are equal this function returns the Boolean value true else it returns

the value false.

Syntax

Given below is the syntax of the function EqualsIgnoreCase()

EqualsIgnoreCase(string1, string2)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name age and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

Apache Pig

129

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING PigStorage(',')as (id:int,

name:chararray, age:int, city:chararray);

Given below is an example of the EqualsIgnoreCase() function. In this example we are

comparing the names of every employees with the string value ‘Robin’.

grunt> equals_data = FOREACH emp_data GENERATE (id,name),

EqualsIgnoreCase(name, 'Robin');

The above statement compares the string “Robin” (case sensitive) with the names of the

employees, if the value matches it returns true else it returns false. In short, this

statement searches the employee record whose name is ‘Robin’

The result of the statement will be stored in the schema named equals_data. Verify the

content of the schema equals_data, using the Dump operator as shown below.

grunt> Dump equals_data;

((1,Robin),true)

((2,BOB),false)

((3,Maya),false)

((4,Sara),false)

((5,David),false)

((6,Maggy),false)

((7,Robert),false)

((8,Syam),false)

((9,Mary),false)

((10,Saran),false)

((11,Stacy),false)

((12,Kelly),false)

INDEXOF ()

The INDEXOF() function accepts a string value, a character and an index (integer). It

returns the first occurrence of the given character in the string, searching forward from

the given index.

Syntax

Given below is the syntax of the INDEXOF() function.

INDEXOF(string, 'character', startIndex)

Apache Pig

130

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the INDEXOF() function. In this example, we are finding

the occurrence of the letter “r” in the names of every employee using this function.

grunt> indexof_data = FOREACH emp_data GENERATE (id,name), INDEXOF(name, 'r',0);

The above statement parses the name of each employee and returns the index value at

which the letter ‘r’ occurred for the first time. If the name doesn’t contain the letter ‘r’ it

returns the value -1

The result of the statement will be stored in the schema named indexof_data. Verify the

content of the schema indexof_data, using the Dump operator as shown below.

grunt> Dump indexof_data;

((1,Robin),-1)

((2,BOB),-1)

((3,Maya),-1)

((4,Sara),2)

((5,David),-1)

((6,Maggy),-1)

((7,Robert),4)

((8,Syam),-1)

((9,Mary),2)

((10,Saran),2)

Apache Pig

131

((11,Stacy),-1)

((12,Kelly),-1)

LAST_INDEX_OF ()

The LAST_INDEX_OF() function accepts a string value and a character. It returns the

last occurrence of the given character in the string, searching backward from the end of

the string.

Syntax

Given below is the syntax of the LAST_INDEX_OF() function.

LAST_INDEX_OF(string, 'character')

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the LAST_INDEX_OF() function. In this example, we are

going to find the occurrence of the letter “g” from the end, in the names of every

employee.

grunt> last_index_data = FOREACH emp_data GENERATE (id,name),

LAST_INDEX_OF(name, 'g');

The above statement parses the name of each employee from the end and returns the

index value at which the letter ‘g’ occurred for the first time. If the name doesn’t contain

the letter ‘g’ it returns the value -1

Apache Pig

132

The result of the statement will be stored in the schema named last_index_data. Verify the

content of the schema last_index_data using the Dump operator as shown below.

grunt> Dump last_index_data;

((1,Robin),-1)

((2,BOB),-1)

((3,Maya),-1)

((4,Sara),2)

((5,David),-1)

((6,Maggy),-1)

((7,Robert),4)

((8,Syam),-1)

((9,Mary),2)

((10,Saran),2)

((11,Stacy),-1)

((12,Kelly),-1)

LCFIRST ()

This function is used to covert the first character of the given string into lowercase.

Syntax

Following is the syntax of the LCFIRST() function.

LCFIRST(expression)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

Apache Pig

133

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the LCFIRST() function. In this example, we have converted

all the first letters of the names of the employees to lowercase.

grunt> Lcfirst_data = FOREACH emp_data GENERATE (id,name), LCFIRST(name);

The result of the statement will be stored in the schema named Lcfirst_data. Verify the

content of the schema Lcfirst_data, using the Dump operator as shown below.

Dump Lcfirst_data;

((1,Robin),robin)

((2,BOB),bob)

((3,Maya),maya)

((4,Sara),sara)

((5,David),david)

((6,Maggy),maggy)

((7,Robert),robert)

((8,Syam),syam)

((9,Mary),mary)

((10,Saran),saran)

((11,Stacy),stacy)

((12,Kelly),kelly)

UCFIRST ()

This function accepts a string, converts the first letter of it into uppercase, and returns the

result.

Syntax

Here is the syntax of the function UCFIRST() function.

UCFIRST(expression)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

Apache Pig

134

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the UCFIRST() function. In this example, we are trying to

convert the first letters of the names of the cities, to which the employees belong to, to

uppercase.

grunt> ucfirst_data = FOREACH emp_data GENERATE (id,city), UCFIRST();

The result of the statement will be stored in the schema named ucfirst_data. Verify the

content of the schema ucfirst_data, using the Dump operator as shown below.

In our example, the first letter of the name of the city “newyork” is in lowercase. After

applying UCFIRST() function, it turns into “NEWYORK”

Dump ucfirst_data;

((1,newyork),Newyork)

((2,Kolkata),Kolkata)

((3,Tokyo),Tokyo)

((4,London),London)

((5,Bhuwaneshwar),Bhuwaneshwar)

((6,Chennai),Chennai)

((7,newyork),Newyork)

((8,Kolkata),Kolkata)

((9,Tokyo),Tokyo)

((10,London),London)

((11,Bhuwaneshwar),Bhuwaneshwar)

((12,Chennai),Chennai)

UPPER ()

This function is used to convert all the characters in a string to uppercase.

Syntax

The syntax of the UPPER() function is as follows:

UPPER(expression)

Apache Pig

135

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/. This file

contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the UPPER() function. In this example, we have converted

the names of all the employees to upper case.

grunt> upper_data = FOREACH emp_data GENERATE (id,name), UPPER(name);

The above statement converts the names of all the employees to uppercase and returns

the result.

The result of the statement will be stored in a schema named upper_data. Verify the content

of the schema upper_data, using the Dump operator as shown below.

Dump upper_data;

((1,Robin),ROBIN)

((2,BOB),BOB)

((3,Maya),MAYA)

((4,Sara),SARA)

((5,David),DAVID)

((6,Maggy),MAGGY)

((7,Robert),ROBERT)

((8,Syam),SYAM)

((9,Mary),MARY)

((10,Saran),SARAN)

((11,Stacy),STACY)

((12,Kelly),KELLY)

Apache Pig

136

LOWER ()

This function is used to convert all the characters in a string to lowercase.

Syntax

Following is the syntax of the LOWER() function.

LOWER(expression)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Given below is an example of the LOWER() function. In this example, we have converted

the names of all the employees to lowercase.

grunt> lower_data = FOREACH emp_data GENERATE (id,name), LOWER(name);

The above statement converts the names of all the employees to uppercase and returns

the result.

The result of the statement will be stored in the schema named lower_data. Verify the

content of the schema lower_data, using the Dump operator.

Dump upper_data;

((1,Robin),robin)

((2,BOB),bob)

((3,Maya),maya)

((4,Sara),sara)

((5,David),david)

Apache Pig

137

((6,Maggy),maggy)

((7,Robert),robert)

((8,Syam),syam)

((9,Mary),mary)

((10,Saran),saran)

((11,Stacy),stacy)

((12,Kelly),kelly)

REPLACE ()

This function is used to replace all the characters in a given string with the new characters.

Syntax

Given below is the syntax of the REPLACE() function. This function accepts three

parameters, namely,

 string: The string that is to be replaced. If we want to replace the string within a

schema, we have to pass the column name the string belongs to.

 regEXP: Here we have to pass the string/regular expression we want to replace.

 newChar: Here we have to pass the new value of the string.

REPLACE(string, 'regExp', 'newChar');

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Apache Pig

138

Following is an example of the REPLACE() function. In this example, we have replaced

the name of the city Bhubaneshwar with a shorter form Bhuw.

grunt> replace_data = FOREACH emp_data GENERATE

(id,city),REPLACE(city,'Bhuwaneshwar','Bhuw');

The above statement replaces the string 'Bhuwaneshwar' with 'Bhuw' in the column

named city in the emp schema and returns the result. This result is stored in the schema

named replace_data. Verify the content of the schema replace_data using the Dump

operator as shown below.

Dump replace_data;

((1,newyork),newyork)

((2,Kolkata),Kolkata)

((3,Tokyo),Tokyo)

((4,London),London)

((5,Bhuwaneshwar),Bhuw)

((6,Chennai),Chennai)

((7,newyork),newyork)

((8,Kolkata),Kolkata)

((9,Tokyo),Tokyo)

((10,London),London)

((11,Bhuwaneshwar),Bhuw)

((12,Chennai),Chennai)

STRSPLIT ()

This function is used to split a given string by a given delimiter.

Syntax

The syntax of STRSPLIT() is given below. This function accepts a string that is needed to

be split, a regular expression, and an integer value specifying the limit (the number of

substrings the string should be split). This function parses the string and when it

encounters the given regular expression, it splits the string into n number of substrings

where n will be the value passed to limit.

STRSPLIT(string, regex, limit)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin_Smith,22,newyork

002,BOB_Wilson,23,Kolkata

003,Maya_Reddy,23,Tokyo

004,Sara_Jain,25,London

005,David_Miller,23,Bhuwaneshwar

006,Maggy_Moore,22,Chennai

Apache Pig

139

007,Robert_Scott,22,newyork

008,Syam_Ketavarapu,23,Kolkata

009,Mary_Carter,25,Tokyo

010,Saran_Naidu,25,London

011,Stacy_Green,25,Bhuwaneshwar

012,Kelly_Moore,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the STRSPLIT() function. If you observe the emp.txt file, you

can find that, in the name column, we have the names and surnames of the employees

separated by the delemeter “_”.

In this example, we are trying to split the name and surname of the employees using

STRSPLIT() function.

grunt> strsplit_data = FOREACH emp_data GENERATE (id,name), STRSPLIT

(name,'_',2);

The result of the statement will be stored in the schema named strsplit_data. Verify the

content of the schema strsplit_data, using the Dump operator as shown below.

grunt> Dump strsplit_data;

((1,Robin_Smith),(Robin,Smith))

((2,BOB_Wilson),(BOB,Wilson))

((3,Maya_Reddy),(Maya,Reddy))

((4,Sara_Jain),(Sara,Jain))

((5,David_Miller),(David,Miller))

((6,Maggy_Moore),(Maggy,Moore))

((7,Robert_Scott),(Robert,Scott))

((8,Syam_Ketavarapu),(Syam,Ketavarapu))

((9,Mary_Carter),(Mary,Carter))

((10,Saran_Naidu),(Saran,Naidu))

((11,Stacy_Green),(Stacy,Green))

((12,Kelly_Moore),(Kelly,Moore))

STRSPLITTOBAG ()

This function is similar to the STRSPLIT() function. It splits the string by a given delimiter

and returns the result in a bag.

Syntax

The syntax of SPLITTOBAG() is given below. This function accepts a string that is needed

to be split, a regular expression, and an integer value specifying the limit (the number of

substrings the string should be split). This function parses the string and when it

encounters the given regular expression, it splits the sting into n number of substrings

where n will be the value passed to limit.

Apache Pig

140

STRSPLIT(string, regex, limit)

Example

Assume that there is a file named emp.txt in the HDFS directory /pig_data/ as shown

below. This file contains the student details such as id, name, age, and city.

emp.txt

001,Robin_Smith,22,newyork

002,BOB_Wilson,23,Kolkata

003,Maya_Reddy,23,Tokyo

004,Sara_Jain,25,London

005,David_Miller,23,Bhuwaneshwar

006,Maggy_Moore,22,Chennai

007,Robert_Scott,22,newyork

008,Syam_Ketavarapu,23,Kolkata

009,Mary_Carter,25,Tokyo

010,Saran_Naidu,25,London

011,Stacy_Green,25,Bhuwaneshwar

012,Kelly_Moore,22,Chennai

And, we have loaded this file into Pig with a schema named emp_data as shown below.

grunt > emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Following is an example of the STRSPLITTOBAG() function. If you observe the emp.txt

file, you can find that, in the name column, we have name and surname of the

employees separated by the delemeter “_”.

In this example we are trying to split the name and surname of the employee, and get the

result in a bag using STRSPLITTOBAG() function.

grunt> strsplittostring_data = FOREACH emp_data GENERATE (id,name), STRSPLIT

(name,'_',2);

The result of the statement will be stored in the schema named strsplittostring_data.

Verify the content of the schema strsplittostring_data, using the Dump operator as

shown below.

grunt> Dump strsplittostring_data;

((1,Robin_Smith),{(Robin),(Smith)})

((2,BOB_Wilson),{(BOB),(Wilson)})

((3,Maya_Reddy),{(Maya),(Reddy)})

((4,Sara_Jain),{(Sara),(Jain)})

((5,David_Miller),{(David),(Miller)})

((6,Maggy_Moore),{(Maggy),(Moore)})

((7,Robert_Scott),{(Robert),(Scott)})

((8,Syam_Ketavarapu),{(Syam),(Ketavarapu)})

((9,Mary_Carter),{(Mary),(Carter)})

Apache Pig

141

((10,Saran_Naidu),{(Saran),(Naidu)})

((11,Stacy_Green),{(Stacy),(Green)})

((12,Kelly_Moore),{(Kelly),(Moore)})

Trim ()

The TRIM function accepts a string and returns its copy after removing the unwanted

spaces before and after it.

Syntax

Here is the syntax of the TRIM() function.

TRIM(expression)

Example

Assume we have some unwanted spaces before and after the names of the employees in

the records of the emp_data schema.

Dump emp_data;

(1, Robin ,22,newyork)

(2,BOB,23,Kolkata)

(3, Maya ,23,Tokyo)

(4,Sara,25,London)

(5, David ,23,Bhuwaneshwar)

(6,maggy,22,Chennai)

(7,Robert,22,newyork)

(8, Syam ,23,Kolkata)

(9,Mary,25,Tokyo)

(10, Saran ,25,London)

(11, Stacy,25,Bhuwaneshwar)

(12, Kelly ,22,Chennai)

Using the TRIM() function, we can remove these heading and tailing spaces from the

names, as shown below.

grunt> trim_data = FOREACH emp_data GENERATE (id,name),

TRIM(name);

The above statement returns the copy of the names by removing the heading and tailing

spaces from the names of the employees. The result is stored in the schema named

trim_data. Verify the result of the schema trim_data using the Dump operator as shown

below.

grunt> Dump trim_data;

((1, Robin),Robin)

((2,BOB),BOB)

Apache Pig

142

((3, Maya),Maya)

((4,Sara),Sara)

((5, David),David)

((6,maggy),maggy)

((7,Robert),Robert)

((8, Syam),Syam)

((9,Mary),Mary)

((10, Saran),Saran)

((11, Stacy),Stacy)

((12, Kelly),Kelly)

LTRIM ()

The function LTRIM() is same as the function TRIM(). It removes the unwanted spaces

from the left side of the given string (heading spaces).

Syntax

Here is the syntax of the LTRIM() function.

LTRIM(expression)

Example

Assume we have some unwanted spaces before and after the names of the employees in

the records of the emp_data schema.

Dump emp_data;

(1, Robin ,22,newyork)

(2, BOB,23,Kolkata)

(3, Maya ,23,Tokyo)

(4, Sara,25,London)

(5, David ,23,Bhuwaneshwar)

(6, maggy,22,Chennai)

(7, Robert,22,newyork)

(8, Syam ,23,Kolkata)

(9, Mary,25,Tokyo)

(10, Saran ,25,London)

(11, Stacy,25,Bhuwaneshwar)

(12, Kelly ,22,Chennai)

Using the LTRIM() function, we can remove the heading spaces from the names as shown

below.

grunt> ltrim_data = FOREACH emp_data GENERATE (id,name),

LTRIM(name);

The above statement returns the copy of the names by removing the heading spaces from

the names of the employees. The result is stored in the schema named ltrim_data. Verify

the result of the schema ltrim_data using the Dump operator as shown below.

Apache Pig

143

grunt> Dump ltrim_data;

((1, Robin),Robin)

((2,BOB),BOB)

((3, Maya),Maya)

((4,Sara),Sara)

((5, David),David)

((6,maggy),maggy)

((7,Robert),Robert)

((8, Syam),Syam)

((9,Mary),Mary)

((10, Saran),Saran)

((11, Stacy),Stacy)

((12, Kelly),Kelly)

RTRIM

The function RTRIM() is same as the function TRIM(). It removes the unwanted spaces

from the right side of a given string (tailing spaces).

Syntax

The syntax of the RTRIM() function is as follows –

RTRIM(expression)

Example

Assume we have some unwanted spaces before and after the names of the employees in

the records of the emp_data schema as shown below.

Dump emp_data;

(1, Robin ,22,newyork)

(2, BOB,23,Kolkata)

(3, Maya ,23,Tokyo)

(4, Sara,25,London)

(5, David ,23,Bhuwaneshwar)

(6, maggy,22,Chennai)

(7, Robert,22,newyork)

(8, Syam ,23,Kolkata)

(9, Mary,25,Tokyo)

(10, Saran ,25,London)

(11, Stacy,25,Bhuwaneshwar)

(12, Kelly ,22,Chennai)

Apache Pig

144

Using the RTRIM() function, we can remove the heading spaces from the names as shown

below.

grunt> rtrim_data = FOREACH emp_data GENERATE (id,name),

RTRIM(name);

The above statement returns the copy of the names by removing the tailing spaces from

the names of the employees. The result is stored in the schema named rtrim_data. Verify

the result of the schema rtrim_data using the Dump operator as shown below.

grunt> Dump rtrim_data;

((1, Robin), Robin)

((2,BOB),BOB)

((3, Maya), Maya)

((4,Sara),Sara)

((5, David), David)

((6,maggy),maggy)

((7,Robert),Robert)

((8, Syam), Syam)

((9,Mary),Mary)

((10, Saran), Saran)

((11, Stacy), Stacy)

((12, Kelly), Kelly)

Apache Pig

145

Apache Pig provides the following Date and Time functions –

Operator Description

o

o ToDate

o

ToDate(milliseconds),

ToDate(iosstring),

ToDate(userstring, format),

ToDate(userstring, format, timezone)

This function returns a date-time object according to the given

parameters.

o

o CurrentTime

CurrentTime()

returns the date-time object of the current time.

o

o GetDay

GetDay(datetime)

Returns the day of a month from the date-time object.

o

o GetHour

GetHour(datetime)

Returns the hour of a day from the date-time object.

o

o GetMilliSecond

GetMilliSecond(datetime)

Returns the millisecond of a second from the date-time object.

o

o GetMinute

GetMinute(datetime)

Returns the minute of an hour from the date-time object.

o

o GetMonth

GetMonth(datetime)

Returns the month of a year from the date-time object.

GetSecond

GetSecond(datetime)

Returns the second of a minute from the date-time object.

o

o GetWeek
GetWeek(datetime)

Returns the week of a year from the date-time object.

28. date-time Functions

Apache Pig

146

o

o GetWeekYear

GetWeekYear(datetime)

Returns the week year from the date-time object.

o

o GetYear

GetYear(datetime)

Returns the year from the date-time object.

o ToString

o

ToString(datetime [, format string])

Converts the date-time object to the ISO or the customized string.

AddDuration

AddDuration(datetime, duration)

Returns the result of a date-time object along with the duration

object.

o SubtractDuration

o

SubtractDuration(datetime, duration)

Subtracts the Duration object from the Date-Time object and

returns the result.

o DaysBetween

DaysBetween(datetime1, datetime2)

Returns the number of days between the two date-time objects.

o HoursBetween

HoursBetween(datetime1, datetime2)

Returns the number of hours between two date-time objects.

o MilliSecondsBetween

MilliSecondsBetween(datetime1, datetime2)

Returns the number of milliseconds between two date-time

objects.

o MinutesBetween

o

MinutesBetween(datetime1, datetime2)

Returns the number of minutes between two date-time objects.

o

MonthsBetween

o

MonthsBetween(datetime1, datetime2)

Returns the number of months between two date-time objects.

o

SecondsBetween

o

SecondsBetween(datetime1, datetime2)

Returns the number of seconds between two date-time objects.

o ToMilliSeconds

o
ToMilliSeconds(datetime)

Apache Pig

147

Calculates the number of milliseconds elapsed since January 1,

1970, 00:00:00.000 and returns the result.

o

o WeeksBetween

o

WeeksBetween(datetime1, datetime2)

Returns the number of weeks between two date-time objects.

o

o YearsBetween

o

YearsBetween(datetime1, datetime2)

Returns the number of years between two date-time objects.

ToDate ()

This function is used to generate a DateTime object according to the given parameters.

Syntax

The syntax of ToDate() function can be any of the following –

ToDate(milliseconds)

ToDate(iosstring)

ToDate(userstring, format)

ToDate(userstring, format, timezone)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file

contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the ToDate() function. Here we are converting the DateTime

object corresponding to the date-of-birth of every employee.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime >);

Apache Pig

148

The result (DateTime object of every employee) of the statement will be stored in the

schema named todate_data. Verify the content of this schema using the Dump operator

as shown below.

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

GetDay ()

This function accepts a date-time object as a parameter and returns the current day of the

given date-time object.

Syntax

Here is the syntax of the GetDay() function.

GetDay(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetDay() function. The GetDay() function will retrive the

day from the given Date-Time object. Therefore, first of all, let us generate the date-time

objects of all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Apache Pig

149

Now, let us get the day from the date-of-birth using GetDay() function and store it in the

schema named getday_data.

getday_data = foreach todate_data generate(date_time), GetDay(date_time);

Verify the contents of the getday_data schema using the Dump operator.

Dump getday_data;

(1989-09-26T09:00:00.000+05:30,26)

(1980-06-20T10:22:00.000+05:30,20)

(1990-12-19T03:11:44.000+05:30,19)

GetHour ()

This function accepts a date-time object as parameter and returns the current hour of the

current day of a given date-time object.

Syntax

Here is the syntax of the GetHour() function.

GetHour(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetHour() function. The GetHour() function will retrive

the hour of the day from the given Date-Time object. Therefore, first of all, let’s generate

the Date-Time objects of all employees using todate() function.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

Apache Pig

150

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Let us now get the hour from the birth time of each employee using GetDay() function

and store it in the schema named gethour_data.

gethour_data = foreach todate_data generate (date_time), GetHour(date_time);

Now verify the contents of the getday_data schema using the Dump operator as shown

below.

Dump gethour_data;

(1989-09-26T09:00:00.000+05:30,9)

(1980-06-20T10:22:00.000+05:30,10)

(1990-12-19T03:11:44.000+05:30,3)

GetMinute ()

This function accepts a date-time object as parameter and returns the minute of the

current hour of a given date-time object.

Syntax

Here is the syntax of the GetMinute() function.

GetMinute(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetMinute() function. The GetMinute() function will retrive

the minute of the hour from the given date-time object. Therefore, first of all, let’s

generate the date-time objects of all employees using todate() function.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Apache Pig

151

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Now, let’s get the minutes from the birth time of each employee using GetMinute() and

store it in the schema named getminute_data as shown below.

getminute_data = foreach todate_data generate (date_time),

GetMinute(date_time);

Now verify the contents of the getminute_data schema using the Dump operator as

shown below.

Dump getminute_data;

(1989-09-26T09:00:00.000+05:30,0)

(1980-06-20T10:22:00.000+05:30,22)

(1990-12-19T03:11:44.000+05:30,11)

GetSecond ()

This function accepts a date-time object as a parameter and returns the seconds of the

current minute of a given date-time object.

Syntax

Here is the syntax of the GetSecond() function.

GetSecond(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Apache Pig

152

Following is an example of the GetSecond() function. It retrives the seconds of a minute

from the given date-time object. Therefore, let’s generate the date-time objects of all

employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Let us now get the seconds from the birth time of each employee using GetSecond()

function and store it in the schema named getsecond_data as shown below.

getsecond_data = foreach todate_data generate (date_time),

GetSecond(date_time);

Now verify the contents of the getsecond_data schema using the Dump operator as

shown below.

Dump getsecond_data;

(1989-09-26T09:00:00.000+05:30,0)

(1980-06-20T10:22:00.000+05:30,0)

(1990-12-19T03:11:44.000+05:30,44)

GetMilliSecond ()

This function accepts a date-time object as a parameter and returns the milliseconds of

the current second of a given date-time object.

Syntax

Here is the syntax of the GetMilliSecond() function.

GetMilliSecond(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, it has person id,

date and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

Apache Pig

153

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetMilliSecond() function. The GetMilliSecond() function

will retrive the milliseconds of the current second from the given date-time object.

Therefore, First of all let’s generate the date-time objects of all employees using

todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Now, let’s get the seconds from the birth time of each employee using

GetMilliSecond() function and store it in the schema named getmillisecond_data as

shown below.

getmillisecond_data = foreach todate_data generate (date_time),

GetMilliSecond(date_time);

Now verify the contents of the getmillisecond_data schema using Dump operator as

shown below.

Dump getmillisecond_data;

(1989-09-26T09:00:00.000+05:30,0)

(1980-06-20T10:22:00.000+05:30,0)

(1990-12-19T03:11:44.000+05:30,0)

GetYear

This function accepts a date-time object as parameter and returns the current year from

the given date-time object.

Syntax

Here is the syntax of the GetYear() function.

GetYear(datetime)

Apache Pig

154

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, it has person id,

date and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetYear() function. It will retrive the current year from

the given date-time object. Therefore, First of all let’s generate the date-time objects of

all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Let us now get the year from the date-of-birth of each employee using the GetYear()

function and store it in the schema named getyear_data.

getyear_data = foreach todate_data generate (date_time), GetYear(date_time);

Now verify the contents of the getyear_data schema using Dump operator as shown

below.

Dump getyear_data;

(1989-09-26T09:00:00.000+05:30,1989)

(1980-06-20T10:22:00.000+05:30,1980)

(1990-12-19T03:11:44.000+05:30,1990)

GetMonth ()

This function accepts a date-time object as a parameter and returns the current month of

the current year from the given date-time object.

Apache Pig

155

Syntax

Here is the syntax of the GetMonth() function.

GetMonth(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, id, date and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetMonth() function. It will retrive the current month from

the given date-time object. Therefore, First of all let’s generate the date-time objects of

all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Let us now get the month from the date-of-birth of each employee using GetMonth()

function and store it in the schema named getmonth_data.

getmonth_data = foreach todate_data generate (date_time), GetMonth(date_time);

Now verify the contents of the getmonth_data schema using Dump operator as shown

below.

Dump getmonth_data;

(1989-09-26T09:00:00.000+05:30,9)

(1980-06-20T10:22:00.000+05:30,6)

(1990-12-19T03:11:44.000+05:30,12)

Apache Pig

156

GetWeek ()

This function accepts a date-time object as parameter and returns the current week of

the current month from the given date-time object.

Syntax

Here is the syntax of the GetWeek() function.

GetWeek(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, it has person id,

date and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetWeek() function. It will retrive the current week from

the given date-time object. Therefore, let us generate the date-time objects of all

employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Let us now get the month from the date-of-birth of each employee using GetWeek() and

store it in the schema named getweek_data.

getweek_data = foreach todate_data generate (date_time), GetWeek(date_time);

Apache Pig

157

Now, verify the contents of the getweek_data schema using the Dump operator.

Dump getWeek_data;

(1989-09-26T09:00:00.000+05:30,39)

(1980-06-20T10:22:00.000+05:30,25)

(1990-12-19T03:11:44.000+05:30,51)

GetWeekYear ()

This function accepts a date-time object as a parameter and returns the current week year

from the given date-time object.

Syntax

Here is the syntax of the GetWeekYear() function.

GetWeekYear(datetime)

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/ as shown

below. This file contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the GetWeekYear() function. It will retrive the current week

year from the given date-time object. Therefore, let us generate the date-time objects of

all employees using todate() function as shown below.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Apache Pig

158

Let us get the month from the date-of-birth of each employee using GetWeekYear()

function and store it in the schema named getweekyear_data as shown below.

getweekyear_data = foreach todate_data generate (date_time),

GetWeekYear(date_time);

Now verify the contents of the getweekyear_data schema using the Dump operator.

Dump getweekyear_data;

(1989-09-26T09:00:00.000+05:30,1989)

(1980-06-20T10:22:00.000+05:30,1980)

(1990-12-19T03:11:44.000+05:30,1990)

CurrentTime ()

This function is used to generate DateTime object of the current time.

Syntax

Here is the syntax of CurrentTime() function.

CurrentTime()

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file

contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the CurrentTime() function. Here we are generating the

current time.

grunt> currenttime_data = foreach todate_data generate CurrentTime();

The result of the statement will be stored in the schema named currenttime_data. Verify

the content of this schema using the Dump operator.

Dump currenttime_data;

(2015-11-06T11:31:02.013+05:30)

Apache Pig

159

(2015-11-06T11:31:02.013+05:30)

(2015-11-06T11:31:02.013+05:30)

ToString ()

This method is used to convert the date-time object to a customized string.

Syntax

Here is the syntax of the ToString() function.

ToString(datetime [, format string])

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file

contains the date-of-birth details of a particular person, id, date, and time.

date.txt

001,1989/09/26 09:00:00

002,1980/06/20 10:22:00

003,1990/12/19 03:11:44

And, we have loaded this file into Pig with a schema named raw_date as shown below.

grunt > raw_date = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int,date:chararray);

Following is an example of the ToString() function. The ToString() function converts the

given date-time objects in to String format. Therefore, let us generate the date-time

objects of all employees using todate() function.

grunt todate_data = foreach raw_date generate ToDate(date,'yyyy/MM/dd

HH:mm:ss') as (date_time:DateTime);

Dump todate_data;

(1989-09-26T09:00:00.000+05:30)

(1980-06-20T10:22:00.000+05:30)

(1990-12-19T03:11:44.000+05:30)

Let us get the string format of the date-time objects of all the employees using ToString()

method and store it in a schema named tostring_data.

 tostring_data = foreach todate_data generate (date_time),

ToString(date_time,Text);

Apache Pig

160

Verify the tostring_data schema using the Dump command as shown below.

Dump tostring_data;

(1989-09-26T09:00:00.000+05:30,39)

(1980-06-20T10:22:00.000+05:30,25)

(1990-12-19T03:11:44.000+05:30,51)

DaysBetween ()

This function accepts two date-time objects and calculates the number of days between

the two given date-time objects.

Syntax

Here is the syntax of the DaysBetween() function.

DaysBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth, and date-of-join.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of days between date-of-birth and date-of-join of the

employees using the DaysBetween() function.

daysbetween_data = foreach doj_dob generate DaysBetween(ToDate(doj,'dd/MM/yyyy

HH:mm:ss'),ToDate(dob,'dd/MM/yyyy HH:mm:ss'));

The above statement stores the result in the schema named daysbetween_data. Verify

the contents of the schema using the Dump operator as shown below.

Dump daysbetween_data;

(9243)

(11372)

(7981)

Apache Pig

161

HoursBetween ()

This function accepts two date-time objects and calculates the number of hours between

the two given date-time objects.

Syntax

Here is the syntax of the HoursBetween() function.

HoursBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth, and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of hours between date-of-birth and date-of-joining of the

employees using the HoursBetween() function as shown below.

hoursbetween_data = foreach doj_dob generate

HoursBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'),ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named hoursbetween_data. Verify

the contents of the schema using the Dump operator as shown below.

Dump HoursBetween;

(221832)

(272950)

(191549)

MinutesBetween ()

This function accepts two date-time objects and calculates the number of minutes between

the two given date-time objects.

Apache Pig

162

Syntax

Here is the syntax of the MinutesBetween() function.

MinutesBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth, and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Now, let’s calculate the number of minutes between date-of-birth and date-of-joining of

the employees using the MinutesBetween() function as shown below.

minutesbetween_data = foreach doj_dob generate

MinutesBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'),ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named minutesbetween_data.

Verify the contents of the schema using the Dump operator as shown below.

Dump minutesbetween_data;

(13309920)

(16377038)

(11492988)

SecondsBetween ()

This function accepts two date-time objects and calculates the number of seconds between

the two given date-time objects.

Syntax

Here is the syntax of the SecondsBetween() function.

SecondsBetween(datetime1, datetime2)

Apache Pig

163

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of seconds between date-of-birth and date-of-joining of

the employees using the SecondsBetween() function as shown below.

secondsbetween_data = foreach doj_dob generate

SecondsBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'),ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named secondsbetween_data.

Verify the contents of the schema using the Dump operator as shown below.

Dump secondsbetween_data;

(798595200)

(982622280)

(689579296)

MilliSecondsBetween ()

This function accepts two date-time objects and calculates the number of milliseconds

between the two given date-time objects.

Syntax

Here is the syntax of the MilliSecondsBetween() function.

MilliSecondsBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth and date-of-joining.

Apache Pig

164

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of milli seconds between date-of-birth and date-of-joining

of the employees using the MilliSecondsBetween() function as shown below.

millisecondsbetween_data = foreach doj_dob generate

MilliSecondsBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'), ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named

millisecondsbetween_data. Verify the contents of the schema using the Dump operator

as shown below.

Dump millisecondsbetween_data;

(798595200000)

(982622280000)

(689579296000)

YearsBetween ()

This function accepts two date-time objects and calculates the number of years between

the two given date-time objects.

Syntax

Here is the syntax of the YearsBetween() function.

YearsBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth and date-of-joining.

Apache Pig

165

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of years between date-of-birth and date-of-joining of the

employees using the YearsBetween() function as shown below.

yearsbetween_data = foreach doj_dob generate

YearsBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'),ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named yearsbetween_data. Verify

the contents of the schema using the Dump operator as shown below.

Dump yearsbetween_data;

(25)

(31)

(21)

MonthsBetween ()

This function accepts two date-time objects and calculates the number of months between

the two given date-time objects.

Syntax

Here is the syntax of the MonthsBetween() function.

MonthsBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

Apache Pig

166

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Let us now calculate the number of minutes between date-of-birth and date-of-joining of

the employees using the MonthsBetween() function as shown below.

monthsbetween_data = foreach doj_dob generate

MinutesBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'),ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named monthsbetween_data.

Verify the contents of the schema using the Dump operator as shown below.

Dump monthsbetween;

(13309920)

(16377038)

(11492988)

WeeksBetween ()

This function accepts two date-time objects and calculates the number of weeks between

the two given date-time objects.

Syntax

Here is the syntax of the WeeksBetween() function.

WeeksBetween(datetime1, datetime2)

Example

Assume that there is a file named doj_dob.txt in the HDFS directory /pig_data/. This

file contains the date-of-birth and date-of-joining details of a particular person, id, date-

of-birth and date-of-joining.

doj_dob.txt

001,26/09/1989 09:00:00,16/01/2015 09:00:00

002,20/06/1980 10:22:00,10/08/2011 09:00:00

003,19/12/1990 03:11:44,25/10/2012 09:00:00

And, we have loaded this file into Pig with a schema named doj_dob as shown below.

doj_dob = LOAD 'hdfs://localhost:9000/pig_data/date1.txt' USING

PigStorage(',')as (id:int, dob:chararray, doj:chararray);

Apache Pig

167

Let us now calculate the number of weeks between date-of-birth and date-of-joining of

the employees using the WeeksBetween() function as shown below.

weeksbetween_data = foreach doj_dob generate

WeeksBetween(ToDate(doj,'dd/MM/yyyy HH:mm:ss'),ToDate(dob,'dd/MM/yyyy

HH:mm:ss'));

The above statement stores the result in the schema named weeksbetween_data. Verify

the contents of the schema using the Dump operator as shown below.

Dump weeksbetween_data;

(1320)

(1624)

(1140)

AddDuration ()

This function accepts a date-time object and a duration objects, and adds the given

duration to the date-time object and returns a new date-time object with added duration.

Syntax

Here is the syntax of the AddDuration() function.

AddDuration(datetime, duration)

Note: The Duration is represented in ISO 8601 standard. According to ISO 8601 standard

P is placed at the beginning, while representing the duration and it is called as duration

designator. Likewise,

 Y is the year designator. We use this after declaring the year.

Example : P1Y represents 1 year.

 M is the month designator. We use this after declaring the month.

Example : P1M represents 1 month.

 W is the week designator. We use this after declaring the week.

Example : P1W represents 1 week.

 D is the day designator. We use this after declaring the day.

Example : P1D represents 1 day.

 T is the time designator. We use this before declaring the time.

Example : PT5H represents 5 hours.

 H is the hour designator. We use this after declaring the hour.

Example : PT1H represents 1 hour.

 M is the minute designator. We use this after declaring the minute.

Example : PT1M represents 1 minute.

Apache Pig

168

 S is the second designator. We use this after declaring the second.

Example : PT1S represents 1 second.

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file

contains the date-of-birth details of a particular person, id, date and time and some

duration according to ISO 8601 standard.

date.txt

001,1989/09/26 09:00:00,PT1M

002,1980/06/20 10:22:00,P1Y

003,1990/12/19 03:11:44,P3M

And, we have loaded this file into Pig with a schema named raw_date as shown below.

date_duration = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int, date:chararray, duration:chararray)

Following is an example of the AddDuration() function. You can add certain Duration to

the given date-time object using this method as shown below.

Add_duration_data = foreach date_duration generate(date,duration),

AddDuration(ToDate(date,'yyyy/MM/dd HH:mm:ss'), duration);

The result of the statement will be stored in the schema named add_duration_data.

Verify the content of this schema using the Dump operator as shown below.

Dump add_duration_data;

((1989/09/26 09:00:00,PT1M),1989-09-26T09:01:00.000+05:30)

((1980/06/20 10:22:00,P1Y),1981-06-20T10:22:00.000+05:30)

((1990/12/19 03:11:44,P3M),1991-03-19T03:11:44.000+05:30)

SubtractDuration ()

This function accepts a date-time object and a duration objects, and subtract the given

duration to the date-time object and returns a new date-time object.

Syntax

Here is the syntax of the SubtractDuration() function.

SubtractDuration(datetime, duration)

Apache Pig

169

Example

Assume that there is a file named date.txt in the HDFS directory /pig_data/. This file

contains the date-of-birth details of a particular person, it has person id, date and time

and some duration according to ISO 8601 standard.

date.txt

001,1989/09/26 09:00:00,PT1M

002,1980/06/20 10:22:00,P1Y

003,1990/12/19 03:11:44,P3M

And, we have loaded this file into Pig with a schema named raw_date as shown below.

date_duration = LOAD 'hdfs://localhost:9000/pig_data/date.txt' USING

PigStorage(',')as (id:int, date:chararray, duration:chararray)

Following is an example of the SubtractDuration() function. You can subtract certain

duration from the given date-time object using this method as shown below.

subtractduration_data = foreach date_duration generate(date,duration),

SubtractDuration(ToDate(date,'yyyy/MM/dd HH:mm:ss'), duration);

The result of the statement will be stored in the schema named subtractduration_data.

Verify the content of this schema using the Dump operator as shown below.

Dump subtractduration_data;

((1989/09/26 09:00:00,PT1M),1989-09-26T08:59:00.000+05:30)

((1980/06/20 10:22:00,P1Y),1979-06-20T10:22:00.000+05:30)

((1990/12/19 03:11:44,P3M),1990-09-19T03:11:44.000+05:30)

Apache Pig

170

We have the following Math functions in Apache Pig –

Operator Description

ABS

ABS(expression)

To get the absolute value of an expression.

ACOS

ACOS(expression)

To get the arc cosine of an expression.

ASIN

ASIN(expression)

To get the arc sine of an expression.

ATAN

ATAN(expression)

This function is used to get the arc tangent of an expression.

CBRT

CBRT(expression)

This function is used to get the cube root of an expression.

CEIL

CEIL(expression)

This function is used to get the value of an expression rounded up to the

nearest integer.

COS

COS(expression)

This function is used to get the trigonometric cosine of an expression.

COSH

COSH(expression)

This function is used to get the hyperbolic cosine of an expression.

EXP

EXP(expression)

This function is used to get the Euler’s number e raised to the power of x.

FLOOR

FLOOR(expression)

To get the value of an expression rounded down to the nearest integer.

29. Math Functions

Apache Pig

171

LOG

LOG(expression)

To get the natural logarithm (base e) of an expression.

LOG10

LOG10(expression)

To get the base 10 logarithm of an expression.

RANDOM

RANDOM()

To get a pseudo random number (type double) greater than or equal to 0.0

and less than 1.0.

ROUND

ROUND(expression)

To get the value of an expression rounded to an integer (if the result type

is float) or rounded to a long (if the result type is double).

SIN

SIN(expression)

To get the sine of an expression.

SINH

SINH(expression)

To get the hyperbolic sine of an expression.

SQRT

SQRT(expression)

To get the positive square root of an expression.

TAN

TAN(expression)

To get the trigonometric tangent of an angle.

TANH

TANH(expression)

To get the hyperbolic tangent of an expression.

ABS ()

The ABS() function of Pig Latin is used to calculate the absolute value of a given

expression.

Apache Pig

172

Syntax

Here is the syntax of the ABS() function.

ABS(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us calculate the absolute values of the contents of the math.txt file using ABS() as

shown below.

abs_data = foreach math_data generate (data), ABS(data);

The above statement stores the result in the schema named abs_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump abs_data;

(5.0,5.0)

(16.0,16.0)

(9.0,9.0)

(2.5,2.5)

(5.9,5.9)

(3.1,3.1)

ACOS ()

The ACOS() function of Pig Latin is used to calculate the arc cosine value of a given

expression.

Apache Pig

173

Syntax

Here is the syntax of the ACOS() function.

ACOS(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the arc cosine values of the contents of the math.txt file using ACOS()

function as shown below.

acos_data = foreach math_data generate (data), ACOS(data);

The above statement stores the result in the schema named abs_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump acos_data;

(5.0,NaN)

(16.0,NaN)

(9.0,NaN)

(2.5,NaN)

(5.9,NaN)

(3.1,NaN)

Apache Pig

174

ASIN ()

The ASIN() function is used to calculate the arc sine value of a given expression.

Syntax

Here is the syntax of the ASIN() function.

ASIN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the arc sine values of the contents of the math.txt file using ASIN()

function as shown below.

asin_data = foreach math_data generate (data), ASIN(data);

The above statement stores the result in the schema named asin_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump asin_data;

(5.0,NaN)

(16.0,NaN)

(9.0,NaN)

(2.5,NaN)

(5.9,NaN)

(3.1,NaN)

Apache Pig

175

ATAN ()

The ATAN() function of Pig Latin is used to calculate the arc tan value of a given

expression.

Syntax

Here is the syntax of the ATAN() function.

ATAN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the arc tan values of the contents of the math.txt file using ATAN()

function as shown below.

atan_data = foreach math_data generate (data), ATAN(data);

The above statement stores the result in the schema named asin_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump atan_data;

(5.0,1.373400766945016)

(16.0,1.5083775167989393)

(9.0,1.460139105621001)

(2.5,1.1902899496825317)

(5.9,1.4029004062076729)

(3.1,1.2587541962439153)

Apache Pig

176

CBRT ()

The CBRT() function of Pig Latin is used to calculate the cube root of a given expression.

Syntax

Here is the syntax of the CBRT() function.

CBRT(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the cube root values of the contents of the math.txt file using ATAN()

function as shown below.

cbrt_data = foreach math_data generate (data), CBRT(data);

The above statement stores the result in the schema named cbrt_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump cbrt_data;

(5.0,1.709975946676697)

(16.0,2.5198420997897464)

(9.0,2.080083823051904)

(2.5,1.3572088082974532)

(5.9,1.8069688790571206)

(3.1,1.4580997208745365)

Apache Pig

177

CEIL ()

The CEIL() function is used to calculate value of a given expression rounded up to the

nearest integer.

Syntax

Here is the syntax of the CEIL() function.

CEIL(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the ceil values of the contents of the math.txt file using CEIL()

function as shown below.

ceil_data = foreach math_data generate (data), CEIL(data);

The above statement stores the result in the schema named ceil_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump ceil_data;

(5.0,5.0)

(16.0,16.0)

(9.0,9.0)

(2.5,3.0)

(5.9,6.0)

(3.1,4.0)

Apache Pig

178

COS ()

The COS() function of Pig Latin is used to calculate the cosine value of a given expression.

Syntax

Here is the syntax of the COS() function.

COS(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Now, let’s calculate the cosine values of the contents of the math.txt file using COS()

function as shown below.

cos_data = foreach math_data generate (data), COS(data);

The above statement stores the result in the schema named cos_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump cos_data;

(5.0,0.28366218546322625)

(16.0,-0.9576594803233847)

(9.0,-0.9111302618846769)

(2.5,-0.8011436155469337)

(5.9,0.9274784663996888)

(3.1,-0.999135146307834)

Apache Pig

179

COSH ()

The COSH() function of Pig Latin is used to calculate the hyperbolic cosine of a given

expression.

Syntax

Here is the syntax of the COSH() function.

COSH(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the hyperbolic cosine values of the contents of the math.txt file using

COSH() function as shown below.

cosh_data = foreach math_data generate (data), COSH(data);

The above statement stores the result in the schema named cosh_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump cosh_data;

(5.0,74.20994852478785)

(16.0,4443055.260253992)

(9.0,4051.5420254925943)

(2.5,6.132289479663686)

(5.9,182.52012106128686)

(3.1,11.121499185584959)

Apache Pig

180

EXP ()

The EXP() function of Pig Latin is used to get the Euler’s number e raised to the power of

x (given expression).

Syntax

Here is the syntax of the EXP() function.

EXP(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the exp values of the contents of the math.txt file using EXP() function

as shown below.

exp_data = foreach math_data generate (data), EXP(data);

The above statement stores the result in the schema named exp_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump exp_data;

(5.0,148.4131591025766)

(16.0,8886110.520507872)

(9.0,8103.083927575384)

(2.5,12.182493960703473)

(5.9,365.0375026780162)

(3.1,22.197949164480132)

Apache Pig

181

FLOOR ()

The FLOOR() function is used to calculate the value of an expression rounded down to

the nearest integer Here is the syntax of the FLOOR() function.

FLOOR(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Now, let’s calculate the floor values of the contents of the math.txt file using floor() as

shown below.

floor_data = foreach math_data generate (data), FLOOR(data);

The above statement stores the result in the schema named floor_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump floor_data;

(5.0,5.0)

(16.0,16.0)

(9.0,9.0)

(2.5,2.0)

(5.9,5.0)

(3.1,3.0)

LOG ()

The LOG() function of Pig Latin is used to calculate the natural logarithm (base e) value

of a given expression.

Apache Pig

182

LOG(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the log values of the contents of the math.txt file using LOG() function

as shown below.

log_data = foreach math_data generate (data),LOG(data);

The above statement stores the result in the schema named log_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump log_data;

(5.0,1.6094379124341003)

(16.0,2.772588722239781)

(9.0,2.1972245773362196)

(2.5,0.9162907318741551)

(5.9,1.774952367075645)

(3.1,1.1314020807274126)

LOG10 ()

The LOG10() function of Pig Latin is used to calculate the natural logarithm base 10 value

of a given expression.

LOG10(expression)

Apache Pig

183

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the log10 values of the contents of the math.txt file using LOG10()

function as shown below.

log_data = foreach math_data generate (data),LOG10(data);

The above statement stores the result in the schema named log_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump log10_data;

(5.0,0.6989700043360189)

(16.0,1.2041199826559248)

(9.0,0.9542425094393249)

(2.5,0.3979400086720376)

(5.9,0.7708520186620678)

(3.1,0.4913616804737727)

RANDOM ()

The RANDOM() function is used to get a pseudo random number (type double) greater

than or equal to 0.0 and less than 1.0.

RANDOM()

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

Apache Pig

184

math.txt

5

16

9

2.5

5.9

3.1

 And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now generate random values of the contents of the math.txt file using RANDOM()

function as shown below.

random_data = foreach math_data generate (data), RANDOM();

The above statement stores the result in the schema named random_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump random_data;

(5.0,0.6842057767279982)

(16.0,0.9725172591786139)

(9.0,0.4159326414649489)

(2.5,0.30962777780713147)

(5.9,0.705213727551145)

(3.1,0.24247708413861724)

ROUND ()

The ROUND() function is used to get the value of an expression rounded to an integer (if

the result type is float) or rounded to a long (if the result type is double).

ROUND()

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

5

Apache Pig

185

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now generate round values of the contents of the math.txt file using ROUND()

function as shown below.

round_data = foreach math_data generate (data), ROUND(data);

The above statement stores the result in the schema named round_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump round_data;

(5.0,5)

(16.0,16)

(9.0,9)

(2.5,3)

(5.9,6)

(3.1,3)

SIN ()

The SIN() function of Pig Latin is used to calculate the sine value of a given expression.

Syntax

Here is the syntax of the SIN() function.

SIN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

Apache Pig

186

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Now, let’s calculate the sine values of the contents of the math.txt file using SIN() function

as shown below.

sin_data = foreach math_data generate (data), SIN(data);

The above statement stores the result in the schema named sin_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump sin_data;

(5.0,-0.9589242746631385)

(16.0,-0.2879033166650653)

(9.0,0.4121184852417566)

(2.5,0.5984721441039564)

(5.9,-0.3738765763789988)

(3.1,0.04158075771824354)

SINH ()

The SINH() function is used to calculate the hyperbolic sine value of a given expression.

Syntax

Here is the syntax of the SINH() function.

SINH(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

Apache Pig

187

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the hyperbolic sine values of the contents of the math.txt file using

SINH() function as shown below.

sinh_data = foreach math_data generate (data), SINH(data);

The above statement stores the result in the schema named sinh_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump sinh_data;

(5.0,74.20321057778875)

(16.0,4443055.26025388)

(9.0,4051.54190208279)

(2.5,6.0502044810397875)

(5.9,182.51738161672935)

(3.1,11.076449978895173)

SQRT ()

The SQRT() function is used to calculate the square root of a given expression.

Syntax

Here is the syntax of the SQRT() function.

SQRT(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

math.txt

Apache Pig

188

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the square root values of the contents of the math.txt file using

SQRT() function as shown below.

sqrt_data = foreach math_data generate (data), SQRT(data);

The above statement stores the result in the schema named sqrt_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump sqrt_data;

(5.0,2.23606797749979)

(16.0,4.0)

(9.0,3.0)

(2.5,1.5811388300841898)

(5.9,2.4289915799292987)

(3.1,1.76068165908337)

TAN ()

The TAN() function is used to calculate the trigonometric tangent of a given expression

(angle).

Syntax

Here is the syntax of the TAN() function.

TAN(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

Apache Pig

189

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the tan values of the contents of the math.txt file using TAN() function

as shown below.

tan_data = foreach math_data generate (data), TAN(data);

The above statement stores the result in the schema named tan_data. Verify the contents

of the schema using the Dump operator as shown below.

Dump tan_data;

(5.0,-3.380515006246586)

(16.0,0.3006322420239034)

(9.0,-0.45231565944180985)

(2.5,-0.7470222972386603)

(5.9,-0.4031107890087444)

(3.1,-0.041616750118239246)

TANH ()

The TANH() function is used to calculate the hyperbolic trigonometric tangent of a given

expression (angle).

Syntax

Here is the syntax of the TANH() function.

TANH(expression)

Example

Assume that there is a file named math.txt in the HDFS directory /pig_data/. This file

contains integer and floating point values as shown below.

Apache Pig

190

math.txt

5

16

9

2.5

5.9

3.1

And, we have loaded this file into Pig with a schema named math_data as shown below.

math_data = LOAD 'hdfs://localhost:9000/pig_data/math.txt' USING

PigStorage(',')as (data:float);

Let us now calculate the hyperbolic tangent values for the contents of the math.txt file

using TANH() function as shown below.

tanh_data = foreach math_data generate (data), TANH(data);

The above statement stores the result in the schema named tanh_data. Verify the

contents of the schema using the Dump operator as shown below.

Dump tanh_data;

(5.0,0.9999092042625951)

(16.0,0.9999999999999747)

(9.0,0.999999969540041)

(2.5,0.9866142981514303)

(5.9,0.9999849909996685)

(3.1,0.9959493584508665)

Apache Pig

191

Part 11: Other Modes of Execution

Apache Pig

192

In addition to the built-in functions, Apache Pig provides extensive support for User

Defined Functions (UDF’s). Using these UDF’s, we can define our own functions and use

them. The UDF support is provided in six programming languages, namely, Java, Jython,

Python, JavaScript, Ruby and Groovy.

For writing UDF’s, complete support is provided in Java and limited support is provided in

all the remaining languages. Using Java, you can write UDF’s involving all parts of the

processing like data load/store, column transformation, and aggregation. Since Apache

Pig has been written in Java, the UDF’s written using Java language work efficiently

compared to other languages.

In Apache Pig, we also have a Java repository for UDF’s named Piggybank. Using

Piggybank, we can access Java UDF’s written by other users, and contribute our own

UDF’s.

Types of UDF’s in Java

While writing UDF’s using Java, we can create and use the following three types of

functions –

 Filter Functions – The filter functions are used as conditions in filter statements.

These functions accept a Pig value as input and return a Boolean value.

 Eval Functions – The Eval functions are used in FOREACH-GENERATE statements.

These functions accept a Pig value as input and return a Pig result.

 Algebraic Functions – The Algebraic functions act on inner bags in a

FOREACHGENERATE statement. These functions are used to perform full

MapReduce operations on an inner bag.

Writing UDF’s using Java

To write a UDF using Java, we have to integrate the jar file Pig-0.15.0.jar. In this section,

we discuss how to write a sample UDF using Eclipse. Before proceeding further, make sure

you have installed Eclipse and Maven in your system.

Follow the steps given below to write a UDF function –

1. Open Eclipse and create a new project (say myproject).

2. Convert the newly created project into a Maven project.

3. Copy the following content in the pom.xml. This file contains the Maven

dependencies for Apache Pig and Hadoop-core jar files.

30. User-Defined Functions

Apache Pig

193

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache

.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>Pig_Udf</groupId>

 <artifactId>Pig_Udf</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <build>

 <sourceDirectory>src</sourceDirectory>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.3</version>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <dependencies>

 <dependency>

 <groupId>org.apache.pig</groupId>

 <artifactId>pig</artifactId>

 <version>0.15.0</version>

 </dependency>

 <dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-core</artifactId>

 <version>0.20.2</version>

 </dependency>

 </dependencies>

</project>

4. Save the file and refresh it. In the Maven Dependencies section, you can find the

downloaded jar files.

5. Create a new class file with name Sample_Eval and copy the following content in

it.

import java.io.IOException;

import org.apache.pig.EvalFunc;

import org.apache.pig.data.Tuple;

import java.io.IOException;

import org.apache.pig.EvalFunc;

import org.apache.pig.data.Tuple;

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd

Apache Pig

194

public class Sample_Eval extends EvalFunc<String>{

 public String exec(Tuple input) throws IOException {

 if (input == null || input.size() == 0)

 return null;

 String str = (String)input.get(0);

 return str.toUpperCase();

 }

}

While writing UDF’s, it is mandatory to inherit the EvalFunc class and provide

implementation to exec() function. Within this function, the code required for the

UDF is written. In the above example, we have return the code to convert the

contents of the given column to uppercase.

6. After compiling the class without errors, right-click on the Sample_Eval.java file. It

gives you a menu. Select export as shown in the following screenshot.

Apache Pig

195

7. On clicking export, you will get the following window. Click on JAR file.

8. Proceed further by clicking Next> button. You will get another window where you

need to enter the path in the local file system, where you need to store the jar file.

Apache Pig

196

9. Finally click the Finish button. In the specified folder, a Jar file sample_udf.jar is

created. This jar file contains the UDF written in Java.

Using the UDF

After writing the UDF and generating the Jar file, we have to register the Jar file using the

Register operator, and define alias to the UDF using the define operator. Then you can use

it in the Pig Latin statements just like any other built-in function.

Register

The Register operator is used to registers a JAR file which contains the UDF. By registering

the Jar file, users can intimate the location of the UDF to Pig.

Syntax

Given below is the syntax of the Register operator.

REGISTER path;

Registering sample_udf.jar

Start Apache Pig in local mode as shown below.

$cd PIG_HOME/bin

$./pig –x local

Register the jar file sample_udf.jar which is in the path

/home/Hadoop/Pig/pig_data/sample_udf.jar.

REGISTER '/home/Hadoop/Pig/pig_data/sample_udf.jar'

Define

The Define operator is used to assign an alias to a UDF or streaming command.

Syntax

Given below is the syntax of the Define operator.

DEFINE alias {function | [`command` [input] [output] [ship] [cache]

[stderr]] };

Defining alias to the UDF

Define the alias for sample_eval as shown below.

DEFINE sample_eval sample_eval();

Apache Pig

197

Using the UDF

Suppose there is a file named emp_data in the HDFS /Pig_Data/ directory with the

following content.

001,Robin,22,newyork

002,BOB,23,Kolkata

003,Maya,23,Tokyo

004,Sara,25,London

005,David,23,Bhuwaneshwar

006,Maggy,22,Chennai

007,Robert,22,newyork

008,Syam,23,Kolkata

009,Mary,25,Tokyo

010,Saran,25,London

011,Stacy,25,Bhuwaneshwar

012,Kelly,22,Chennai

And assume we have loaded this file into Pig as shown below.

emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING

PigStorage(',')as (id:int, name:chararray, age:int, city:chararray);

Let us now convert the names of the employees in to upper case using the UDF

sample_eval.

Upper_case = FOREACH emp_data GENERATE sample_eval(name);

Verify the contents of the schema Upper_case as shown below.

Dump Upper_case;

(ROBIN)

(BOB)

(MAYA)

(SARA)

(DAVID)

(MAGGY)

(ROBERT)

(SYAM)

(MARY)

(SARAN)

(STACY)

(KELLY)

Apache Pig

198

Here in this chapter, we will see how how to run Apache Pig scripts in batch mode.

Comments in Pig Script

While writing a script in a file, we can include comments in it as shown below.

Multi-line comments

/* These are the multi-line comments

 In the pig script */

Single –line comments

--we can write single line comments like this.

Executing Pig Script in Batch mode

While executing Apache Pig statements in batch mode, follow the steps given below.

Step 1

Write all the required Pig Latin statements in a single file. We can write all the Pig Latin

statements and commands in a single file and save it as .pig file.

Step 2

Execute the Apache Pig script. You can execute the Pig script from the shell (Linux) as

shown below.

Local mode

MapReduce mode

$ pig -x local Sample_script.pig

$ pig -x mapreduce Sample_script.pig

You can execute it from the Grunt shell as well using the exec command as shown below.

grunt> exec /sample_script.pig

31. Running Scripts

Apache Pig

199

Executing a Pig Script from HDFS

We can also execute a Pig script that resides in the HDFS. Suppose there is a Pig script

with the name Sample_script.pig in the HDFS directory named /pig_data/. We can

execute it as shown below.

$ pig -x mapreduce hdfs://localhost:9000/pig_data/Sample_script.pig

Example

Assume we have a file student_details.txt in HDFS with the following content.

student_details.txt

001,Rajiv,Reddy,21,9848022337,Hyderabad

002,siddarth,Battacharya,22,9848022338,Kolkata

003,Rajesh,Khanna,22,9848022339,Delhi

004,Preethi,Agarwal,21,9848022330,Pune

005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar

006,Archana,Mishra,23,9848022335,Chennai

007,Komal,Nayak,24,9848022334,trivendram

008,Bharathi,Nambiayar,24,9848022333,Chennai

And we have read it into a relation student using LOAD operator as shown below.

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',') as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

We also have a sample script with the name sample_script.pig, in the same HDFS

directory performing operations and transformations on the student schema, as shown

below.

student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING

PigStorage(',')as (id:int, firstname:chararray, lastname:chararray,

phone:chararray, city:chararray);

student_order = ORDER student_details BY age DESC;

student_limit = LIMIT student_details 4;

Dump student_limit;

 The first statement of the script will load the data in the file named

student_data.txt as a relation named student.

 The second statement of the script will arrange the tuples of the schema in

descending order, based on age, and store it as student_order.

Apache Pig

200

 The third statement of the script will store the first 4 tuples of student_order as

student_limit.

 Finally the fourth statement will dump the content of the relation student_limit.

Let us now execute the sample_script.pig as shown below.

$./pig -x mapreduce hdfs://localhost:9000/pig_data/sample_script.pig

Apache Pig gets executed and gives you the output with the following content.

(7,Komal,Nayak,24,9848022334,trivendram)

(8,Bharathi,Nambiayar,24,9848022333,Chennai)

(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)

(6,Archana,Mishra,23,9848022335,Chennai)

2015-10-19 10:31:27,446 [main] INFO org.apache.pig.Main - Pig script completed

in 12 minutes, 32 seconds and 751 milliseconds (752751 ms)

