
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Hadoop Ecosystem: An Introduction

Sneha Mehta1, Viral Mehta2

1International Institute of Information Technology, Department of Information Technology, Pune, India

2MasterCard Technology Pvt. Ltd., Pune, India

Abstract: Hadoop a de facto industry standard has become kernel of the distributed operating system for Big data. Hadoop has gained
its popularity due to its ability of storing, analyzing and accessing large amount of data, quickly and cost effectively through clusters of
commodity hardware. But, No one uses kernel alone. “Hadoop” is taken to be a combination of HDFS and MapReduce. To complement
the Hadoop modules there are also a variety of other projects that provide specialized services and are broadly used to make Hadoop
laymen accessible and more usable, collectively known as Hadoop Ecosystem. All the components of the Hadoop ecosystem, as explicit
entities are evident to address particular needs. Recent Hadoop ecosystem consists of different level layers, each layer performing
different kind of tasks like storing your data, processing stored data, resource allocating and supporting different programming
languages to develop various applications in Hadoop ecosystem.

Keywords: HDFS, HBase, MapReduce, YARN, Hive, Pig, Mahout, Avro, Sqoop, Oozie, Chukwa, Flume, Zookeeper

1. Introduction

Hadoop Ecosystem is a framework of various types of
complex and evolving tools and components which have
proficient advantage in solving problems. Some of the
elements may be very dissimilar from each other in terms of
their architecture; however, what keeps them all together
under a single roof is that they all derive their functionalities
from the scalability and power of Hadoop. Hadoop
Ecosystem is alienated in four different layers: data storage,
data processing, data access, data management. Figure 1
depicts how the diverse elements of hadoop [1] involve at
various layers of processing data.

All the components of the Hadoop ecosystem, as explicit
entities are evident. The holistic view of Hadoop architecture
gives prominence to Hadoop common, Hadoop YARN,
Hadoop Distributed File Systems (HDFS) and Hadoop
MapReduce of the Hadoop Ecosystem. Hadoop common
provides all Java libraries, utilities, OS level abstraction,
necessary Java files and script to run Hadoop, while Hadoop
YARN is a framework for job scheduling and cluster
resource management. HDFS in Hadoop architecture
provides high throughput access to application data and
Hadoop MapReduce provides YARN based parallel
processing of large data sets.

The Hadoop ecosystem [15] [18] [19] includes other tools to
address particular needs. Hive is a SQL dialect and Pig is a
dataflow language for that hide the tedium of creating
MapReduce jobs behind higher-level abstractions more
appropriate for user goals. HBase is a column-oriented
database management system that runs on top of HDFS.
Avro provides data serialization and data exchange services
for Hadoop. Sqoop is a combination of SQL and hadoop.
Zookeeper is used for federating services and Oozie is a
scheduling system. In the absence of an ecosystem [11] [12],
developers have to implement separate sets of technologies
to create Big Data [20] solutions.

Figure 1: Hadoop Ecosystem

2. Data Storage Layer

Data Storage is the layer where the data is stored in a
distributed file system; consist of HDFS and HBase
ColumnDB Storage. HBase is scalable, distributed database
that supports structured data storage for large tables.

2.1 HDFS

HDFS, the storage layer of Hadoop, is a distributed,
scalable, Java-based file system adept at storing large
volumes of data with high-throughput access to application
data on the community machines, providing very high
aggregate bandwidth across the cluster. When data is pushed
to HDFS, it automatically splits up into multiple blocks and
stores/replicates the data thus ensuring high availability and
fault tolerance.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 557

http://www.ibm.com/software/data/infosphere/hadoop/hdfs/
http://www-01.ibm.com/software/data/infosphere/hadoop/what-is-hadoop.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

HDFS comprises of 2 important components (Fig. 2) –
NameNode and DataNode. HDFS operates on a Master-
Slave architecture model where the NameNode acts as the
master node for keeping a track of the storage cluster and the
DataNode acts as a slave node summing up to the various
systems within a Hadoop cluster.

Figure 2: HDFS Architecture

HDFS works on the write once-read many times approach
and this makes it capable of handling such huge volumes of
data with least possibilities of errors caused by replication of
data. This replication of data across the cluster provides fault
tolerance and resilience against server failure. Data
Replication, Data Resilience, and Data Integrity are the three
key features of HDFS.

 NameNode: It acts as the master of the system. It

maintains the name system i.e., directories and files and
manages the blocks which are present on the DataNodes.

 DataNodes: They are the slaves which are deployed on
each machine and provide the actual storage and are
responsible for serving read and write requests for the
clients. Additionally, DataNodes communicate with each
other to co-operate and co-ordinate in the file system
operations.

2.2 HBase

HBase is a scalable, distributed database that supports
structured data storage for large tables. Apache HBase
provides Bigtable - like capabilities on top of Hadoop and
HDFS. HBase is a data model that is similar to Google’s big
table designed to provide quick random access to huge
amounts of structured data. HBase facilitates reading/writing
of Big Data randomly and efficiently in real time. It stores
data into tables with rows and columns as in RDBMs.
HBase tables have one key feature called “versioning”
which helps in keeping a track of the changes made in a cell
and allows the retrieval of the previous version of the cell
contents, if required.

HBase [2] also endow with a variety of functional data
processing features, such as consistency, sharding, high
availability, client API and support for IT operations.

3. Data Processing Layer

Scheduling, resource management and cluster management
is premeditated here. YARN job scheduling and cluster
resource management with Map Reduce are located in this
layer.

3.1 MapReduce

MapReduce [8] is a software framework for distributed
processing of large data sets that serves as the compute layer
of Hadoop which process vast amounts of data (multi-
terabyte data-sets) in-parallel on large clusters (thousands of
nodes) of commodity hardware in a reliable, fault-tolerant
manner.

A MapReduce job usually splits the input data-set into
independent chunks which are processed by the map tasks in
a completely parallel manner. The framework sorts the
outputs of the maps, which are then input to the reduce

tasks. The “Reduce” function aggregates the results of the
“Map” function to determine the “answer” to the query. On
average both the input and the output of the job are stored in
a file-system. The framework takes care of scheduling tasks,
monitoring them and re-executing any failed tasks.

The compute nodes and the storage nodes are the same, that
is, the MapReduce framework and the Hadoop Distributed
File System are running on the same set of nodes. This
configuration allows the framework to effectively schedule
task on the nodes where data is already present, resulting in
very high aggregate bandwidth across the cluster.

Figure 3: MapReduce Architecture: Workflow

The MapReduce framework (Fig. 3), [7] consists of a single
master Job Tracker and one slave Task Tracker per cluster-
node. The master is responsible for scheduling the jobs'

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 558

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

component tasks on the slaves, monitoring them and re-
executing the failed tasks. The slaves execute the tasks as
directed by the master.

Although the Hadoop framework is implemented in Java,
MapReduce [25] applications need not be written in Java.
Hadoop Streaming is a utility which allows users to create
and run jobs with any executables (e.g. shell utilities) as the
mapper and/or the reducer. Hadoop Pipes is a SWIG-
compatible C++ API sto implement MapReduce
applications.

3.2 YARN

YARN (Yet Another Resource Negotiator) forms an integral
part of Hadoop 2.0.YARN is great enabler for dynamic
resource utilization on Hadoop framework as users can run
various Hadoop applications without having to bother about
increasing workloads. The inclusion of YARN in hadoop 2
also means scalability provided to the data processing
applications.

YARN [19] [17] is a core hadoop service that supports two
major services:

--Global resource management (ResourceManager)
--Per-application management (ApplicationMaster)

Figure 4: YARN Architecture

Resource Manager: Resource Manager, in YARN
architecture (Figure 4), is supreme authority that controls all
the decisions related to resource management and allocation.
It has a Scheduler Application Programming Interface (API)
that negotiates and schedules resources. However, The
Scheduler API doesn’t monitor or track the status of
applications.

The main purpose of introducing Resource Manager in
YARN is to optimize the utilization of resources all the time
by managing all the restrictions, which involve capacity

guarantees, fairness in allocation of resources etc. Thus,
YARN Resource Manager is responsible for almost all the
tasks. Resource Manager performs all its tasks in integration
with NodeManager and Application Manager.

Application Manager: Every instance of an application
running within YARN is managed by an Application
Manager, which is responsible for the negotiation of
resources with the Resource Manager. Application Manager
also keeps track of availability and consumption of container
resources, and provides fault tolerance for resources.
Accordingly, it is responsible for negotiating for appropriate
resource containers from the Scheduler, monitoring of their
status, and checking the progress.

Node Manager: NodeManager is the per-machine slave,
which is responsible for launching the applications’
containers, monitoring their resource usage, and reporting
the status of the resource usage to the Resource Manager.
NodeManager manages each node within YARN cluster. It
provides per-node services within the cluster. These services
range from managing a container to monitoring resources
and tracking the health of its node.

YARN benefits include efficient resource utilization, highly
scalability, beyond Java, novel programming models and
services and agility.

4. Data Access Layer

The layer, where the request from Management layer is sent
to Data Processing Layer. Some projects have been setup for
this layer, Some of them are: Hive, A data warehouse
infrastructure that provides data summarization and ad hoc
querying; Pig, A high-level data-flow language and
execution framework for parallel computation; Mahout, A
Scalable machine learning and data mining library; Avro,
data serialization system.

4.1 Hive

Hive [5] is a Hadoop-based data warehousing-like
framework originally developed by Facebook, later the
Apache Software Foundation took it up and developed it
further as an open source under the name Apache Hive. It
resides on top of Hadoop to summarize Big Data, and makes
querying and analyzing easy. It allows users to write queries
in a SQL-like language called HiveQL which are then
converted to MapReduce. This allows SQL programmers
with no MapReduce experience to use the warehouse and
makes it easier to integrate with business intelligence and
visualization tools.
Features of Hive:
 It stores schema in a database and processed data into

HDFS.
 It is designed for OLAP.
 It provides SQL type language for querying called

HiveQL or HQL.
 It is familiar, fast, scalable, and extensible.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 559

https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/streaming/package-summary.html
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
https://www.dezyre.com/article/hadoop-2-0-yarn-framework-the-gateway-to-easier-programming-for-hadoop-users/84

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4.2 Apache Pig

Apache Pig [6] is a platform for analyzing large data sets
that consists of a high-level language for expressing data
analysis programs, coupled with infrastructure for evaluating
these programs. The salient property of Pig programs is that
their structure is amenable to substantial parallelization,
which in turns enables them to handle very large data sets.

At the present time, Pig's infrastructure layer consists of a
compiler that produces sequences of Map-Reduce programs,
for which large-scale parallel implementations already exist
(e.g., the Hadoop subproject). Pig's language layer currently
consists of a textual language called Pig Latin, which has the
following key properties:

 Ease of programming: It is trivial to achieve parallel

execution of simple, "embarrassingly parallel" data
analysis tasks. Complex tasks comprised of multiple
interrelated data transformations are explicitly encoded
as data flow sequences, making them easy to write,
understand, and maintain.

 Optimization Opportunities: The way in which tasks
are encoded permits the system to optimize their
execution automatically, allowing the user to focus on
semantics rather than efficiency.

 Extensibility: Users can create their own functions to do
special-purpose processing.

4.3 Apache Mahout

Apache Mahout [9] [14] is a project of the Apache
Software Foundation to produce free implementations of
distributed or otherwise scalable machine learning
algorithms focused primarily in the areas of collaborative
filtering, clustering and classification and implements them
using the Map Reduce model.

The primitive features of Apache Mahout include:
 The algorithms of Mahout are written on top of Hadoop,

so it works well in distributed environment.
 Mahout uses the Apache Hadoop library to scale

effectively in the cloud.
 Mahout offers the coder a ready-to-use framework for

doing data mining tasks on large volumes of data.
 Mahout lets applications to analyze large sets of data

effectively and in quick time.
 Includes several MapReduce enabled clustering

implementations such as k-means, fuzzy k-means,
Canopy etc.

 Supports Distributed Naive Bayes and Complementary
Naive Bayes classification implementations.

 Comes with distributed fitness function capabilities for
evolutionary programming.

 Includes matrix and vector libraries.

4.4 Avro

Avro [10] is a data serialization system that allows for
encoding the schema of Hadoop files. It is adept at parsing
data and performing removed procedure calls.

It was developed by Doug Cutting, the father of Hadoop.
Since Hadoop writable classes lack language portability,
Avro has become quite helpful, as it deals with data formats
that can be processed by multiple languages. Avro is a
preferred tool to serialize data in Hadoop.

Avro has a schema-based system. A language-independent
schema is associated with its read and writes operations.
Avro serializes the data which has a built-in schema. Avro
serializes the data into a compact binary format, which can
be deserialized by any application.

Avro uses JSON format to declare the data structures.
Presently, it supports languages such as Java, C, C++, C#,
Python, and Ruby. Below are some of the prominent
features of Avro:
 Avro is a language-neutral data serialization system. It

can be processed by many languages (currently C, C++,
C#, Java, Python, and Ruby).

 Avro creates binary structured format that is both
compressible and splittable. Hence it can be efficiently
used as the input

 to Hadoop MapReduce jobs.
 Avro provides rich data structures. For example, you can

create a record that contains an array, an enumerated
type, and a sub record. These data types can be created
in any language can be processed in Hadoop, and the
results can be fed to a third language.

 Avro schemas defined in JSON facilitate
implementation in the languages that already have JSON
libraries.

 Avro creates a self-describing file named Avro Data
File, in which it stores data along with its schema in the
metadata section.

4.5 Apache Sqoop

“SQL to Hadoop and Hadoop to SQL”

Sqoop [11] is a connectivity tool for moving data from non-
Hadoop data stores – such as relational databases and data
warehouses into Hadoop. It allows users to specify the target
location inside of Hadoop and instruct Sqoop to move data
from Oracle, Teradata or other relational databases to the
target.

Sqoop is a tool designed to transfer data between Hadoop
and relational database servers. It is used to import data from
relational databases such as MySQL, Oracle to Hadoop
HDFS, and export from Hadoop file system to relational
databases. It is provided by the Apache Software
Foundation.

--Sqoop Import
The import tool imports individual tables from RDBMS to
HDFS. Each row in a table is treated as a record in HDFS.
All records are stored as text data in text files or as binary
data in Avro and Sequence files.

--Sqoop Export
The export tool exports a set of files from HDFS back to an
RDBMS. The files given as input to Sqoop contain records,

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 560

https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

which are called as rows in table. Those are read and
parsed into a set of records and delimited with user-
specified delimiter.

5. Data Management Layer

A layer that meets, user. User access the system through this
layer which has the components like: Chukwa, A data
collection system for managing large distributed system and
Zookeeper, high-performance coordination service for
distributed applications.

5.1 Oozie

Oozie is a workflow processing system that lets users define
a series of jobs written in multiple languages – such as Map
Reduce, Pig and Hive -- then intelligently link them to one
another. Oozie allows users to specify, for example, that a
particular query is only to be initiated after specified
previous jobs on which it relies for data are completed.
Oozie is a scalable, reliable and extensible system.

Oozie workflow is a collection of actions (i.e. Hadoop
Map/Reduce jobs, Pig jobs) arranged in a control
dependency DAG (Direct Acyclic Graph), specifying a
sequence of actions execution. This graph is specified in
hPDL (a XML Process Definition Language).

Benefits of Oozie are as follows:

 Complex workflow action dependencies – The Oozie

workflow contains actions and dependencies among
these actions. At runtime, Oozie manages dependencies
and executes actions when dependencies identified in
DAG are satisfied.

 Frequency Execution – Oozie workflow specification
supports both data and time triggers.

 Native Hadoop stack integration – Oozie supports all
types of hadoop jobs and is integrated with Hadoop
stack.

 Reduces Time-To-Market (TTM) – The DAG
specification enables users to specify the workflow,
which saves time to build and maintain custom solutions
for dependency and workflow management.

 Mechanism to manage a variety of complex data
Analysis – Oozie is integrated with the yahoo!
Distribution of Hadoop with security and is a primary
mechanism to manage a variety of complex data analysis
workloads across Yahoo!

5.2 Apache Chukwa

Chukwa [24] aims to provide a flexible and powerful
platform for distributed data collection and rapid data
processing. It is an open source data collection system for
monitoring large distributed system and is built on top of the
Hadoop Distributed File System (HDFS) and Map/Reduce
framework that inherits Hadoop’s scalability and robustness.

Chukwa also includes a flexible and powerful toolkit for
displaying, monitoring and analyzing results to make the
best use of the collected data. In order to maintain this
flexibility, Chukwa is structured as a pipeline of collection

and processing stages, with clean and narrow interfaces
between stages.

Chukwa has four primary components:
 Agents that run on each machine and emit data and

Collectors that receive data from the agent and write it to
stable storage.

 MapReduce jobs for parsing and archiving the data.
 HICC, the Hadoop Infrastructure Care Center; a web-

portal style interface for displaying data.

5.3 Apache Flume

Flume [23] is a distributed, reliable, and available service for
efficiently collecting, aggregating, and moving large
amounts of log data. It has a simple and flexible architecture
based on streaming data flows. It is robust and fault tolerant
with tunable reliability mechanisms and many failover and
recovery mechanisms. It uses a simple extensible data model
that allows for online analytic application.

Features of Flume
 Flume ingests log data from multiple web servers into a

centralized store (HDFS, HBase) efficiently.
 Using Flume, we can get the data from multiple servers

immediately into Hadoop.
 Along with the log files, Flume is also used to import

huge volumes of event data produced by social
networking sites.

 Flume supports a large set of sources and destinations
types and can be scaled horizontally.

 Flume supports multi-hop flows, fan-in and fan out
flows, contextual routing, etc.

5.4 Apache Zookeeper

Apache Zookeeper [22] is a coordination service for
distributed application that enables synchronization across a
cluster. Zookeeper in Hadoop can be viewed as centralized
repository where distributed applications can put data and
get data out of it. It is used to keep the distributed system
functioning together as a single unit, using its
synchronization, serialization and coordination goals. For
simplicity's sake Zookeeper can be thought of as a file
system where we have znodes that store data instead of files
or directories storing data. Zookeeper is a Hadoop Admin
tool used for managing the jobs in the cluster.

Features of Zookeeper includes managing configuration
across nodes, implementing reliable messaging,
implementing redundant services and to synchronize process
execution.

Benefits of Zookeeper
 Simple distributed coordination process.
 Synchronization, Reliability and Ordered Messages −

Mutual exclusion and co-operation between server
processes. This process helps in Apache HBase for
configuration management.

 Serialization − Encode the data according to specific
rules. Ensure your application runs consistently.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 561

https://www.dezyre.com/Hadoop-Administration/28?from=zookeeper1tutorial

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 Atomicity − Data transfer either succeed or fail
completely, but no transaction is partial.

6. Conclusion

With a rapid pace in evolution of Big Data, its processing
frameworks also seem to be evolving in a full swing mode.
The huge data giants on the web has adopted Apache
Hadoop had to depend on the partnership of Hadoop HDFS
with the resource management environment and MapReduce
programming. Hadoop ecosystem has introduced a new
processing model that lends itself to common big data use
cases including interactive SQL over big data, machine
learning at scale, and the ability to analyze big data scale
graphs. Apache Hadoop is not actually single product but
instead a collection of several components. When all these
components are merged, it makes the Hadoop very user
friendly. The Hadoop ecosystem and its commercial
distributions continue to evolve, with new or improved
technologies and tools emerging all the time.

7. Acknowledgment

We express our gratitude to our parents, family members,
Prof. (Dr). Vijay Patil (principal) and Prof. Vilas Mankar
(HOD IT Dept.) I2IT, Pune, for his constant encouragement
and motivation throughout this work.

References

[1] Hadoop - Apache Software Foundation project home

page. http://hadoop.apache.org.
[2] HBase - Apache Software Foundation project home

page http://hbase.apache.org.
[3] Kiran kumara Reddi & Dnvsl Indira “Different

Technique to Transfer Big Data: survey” IEEE
Transactions on 52(8) (Aug.2013) 2348 {2355}.

[4] Konstantin Shvachko, et al., “The Hadoop Distributed
File System, ”Mass Storage Systems and Technologies
(MSST), IEEE 26th Symposium on IEEE,
2010,http://storageconference.org/2010/Papers/MSST/S
hvachko.pdf.

[5] Hive - Apache Software Foundation project home page
http://hive.apache.org.

[6] Pig - Apache Software Foundation project home page.
http://pig.apache.org.

[7] Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz “Efficient Big
Data Processing in Hadoop MapReduce”, 2014.

[8] Jeffrey Dean, Sanjay Ghemawat, “MapReduce:
simplified data processing on large clusters”,
Communications of the ACM, v.51 n.1, January 2008
[doi>10.1145/1327452.1327492].

[9] Mahout - Apache Software Foundation project home
page http://mahout.apache.org

[10] Avro - Apache Software Foundation project home page
http://avro.apache.org

[11] J. Yates Monteith, John D. McGregor, and John E.
Ingram, “Hadoop and its evolving ecosystem”,
IWSECO@ ICSOB, Citeseer, 2013.

[12] Monteith, J.Y., McGregor, J.D.: “A three viewpoint
model for software ecosystems”, In: Proceedings of
Software Engineering and Applications’, 2012.

[13] Ivanilton Polato, Reginaldo Ré, Alfredo Goldman,
Fabio Kon, “ A comprehensive view of hadoop research
– A systematic literature review”, Journal of network
and computer applications, volume 46, november 2014.

[14] Arantxa Duque Barrachina, Aisling O’Driscoll, “A big
data methodology for categorising technical support
requests using Hadoop and Mahout”, Journal of Big
Data, February 2014 [DOI: 10.1186/2196-1115-1-1].

[15] Mr.NileshVishwasrao Patil, Mr.Tanvir Patel, “Apache
Hadoop: Resourceful Big Data Management”, IJRSET,
Volume 3, Special Issue 4, April 2014.

[16] Shilpa Manjit Kaur,” BIG Data and Methodology- A
review” ,International Journal of Advanced Research in
Computer Science and Software Engineering, Volume
3, Issue 10, October 2013.

[17] Varsha B.Bobade, “Survey Paper on Big Data and
Hadoop”, IRJET, Volume: 03 Issue: 01, Jan-2016.

[18] A Katal, M. Wazid, R.H. Goudar, "Big Data: Issues,
Challenges, tools and Good practices," Aug. 2013.

[19] Deepika P, Anantha Raman G R,” A Study of Hadoop-
Related Tools and Techniques”, IJARCSSE, Volume 5,
Issue 9, September 2015.

[20] Anand Loganathan, Ankur Sinha, Muthuramakrishnan
V., and Srikanth Natarajan, “A Systematic Approach to
Big Data Exploration of the Hadoop Framework”,
International Journal of Information & Computation
Technology, Volume 4, 2014.

[21] Andrew Pavlo, “A comparison of approaches to large
scale data Analysis”, SIGMOD, 2009.

[22] Zookeeper - Apache Software Foundation project home
page https://zookeeper.apache.org.

[23] Flume - Apache Software Foundation project home
page https://flume.apache.org.

[24] Chukwa - Apache Software Foundation project home
page https://chukwa.apache.org.

[25] J. Dean and S. Ghemawat, “MapReduce: A Flexible
Data Processing Tool”. CACM, 53(1):72–77, 2010.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 562

http://hadoop.apache.org/
http://hbase.apache.org/
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://hive.apache.org/
http://pig.apache.org/
http://dl.acm.org/citation.cfm?id=1327492&CFID=784421157&CFTOKEN=46267265
http://dl.acm.org/citation.cfm?id=1327492&CFID=784421157&CFTOKEN=46267265
http://dl.acm.org/citation.cfm?id=1327492&CFID=784421157&CFTOKEN=46267265
http://doi.acm.org/10.1145/1327452.1327492
http://mahout.apache.org/
http://avro.apache.org/
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045/46/supp/C
http://link.springer.com/article/10.1186/2196-1115-1-1#author-details-1
http://link.springer.com/article/10.1186/2196-1115-1-1#author-details-2
http://link.springer.com/journal/40537
http://link.springer.com/journal/40537
http://www.rroij.com/open-access/apache-hadoop-resourceful-big-datamanagement.php?aid=49715
http://www.rroij.com/open-access/apache-hadoop-resourceful-big-datamanagement.php?aid=49715
https://zookeeper.apache.org/
https://flume.apache.org/
https://chukwa.apache.org/

