
MapReduce

MapReduce

 i

About the Tutorial

MapReduce is a programming paradigm that runs in the background of Hadoop to

provide scalability and easy data-processing solutions. This tutorial explains the

features of MapReduce and how it works to analyze Big Data.

Audience

This tutorial has been prepared for professionals aspiring to learn the basics of Big

Data Analytics using the Hadoop Framework and become a Hadoop Developer.

Software Professionals, Analytics Professionals, and ETL developers are the key

beneficiaries of this course.

Prerequisites

It is expected that the readers of this tutorial have a good understanding of the

basics of Core Java and that they have prior exposure to any of the Linux operating

system flavors.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

MapReduce

 i

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents ... i

1. INTRODUCTION ... 1

What is Big Data? .. 1

Why MapReduce? ... 1

How MapReduce Works? .. 2

MapReduce-Example .. 4

2. ALGORITHM .. 6

Sorting .. 6

Searching .. 7

Indexing .. 8

TF-IDF.. 9

3. INSTALLATION ... 11

Verifying JAVA Installation .. 11

Installing Java ... 11

Verifying Hadoop Installation ... 13

Downloading Hadoop ... 13

Installing Hadoop in Pseudo Distributed mode ... 13

Verifying Hadoop Installation ... 17

 MapReduce

 ii

4. API .. 20

JobContext Interface ... 20

Job Class ... 20

Constructors ... 21

Mapper Class .. 22

Reducer Class .. 23

5. HADOOP IMPLEMENTATION ... 24

MapReduce Algorithm .. 24

MapReduce Implementation .. 25

6. PARTITIONER .. 33

Partitioner .. 33

MapReduce Partitioner Implementation .. 33

7. COMBINERS .. 47

Combiner .. 47

How Combiner Works? ... 47

MapReduce Combiner Implementation .. 48

Compilation and Execution ... 54

8. HADOOP ADMINISTRATION .. 56

HDFS Monitoring... 56

MapReduce Job Monitoring .. 58

 MapReduce

 1

MapReduce is a programming model for writing applications that can process Big

Data in parallel on multiple nodes. MapReduce provides analytical capabilities for

analyzing huge volumes of complex data.

What is Big Data?

Big Data is a collection of large datasets that cannot be processed using traditional

computing techniques. For example, the volume of data Facebook or YouTube

need require it to collect and manage on a daily basis, can fall under the category

of Big Data. However, Big Data is not only about scale and volume, it also involves

one or more of the following aspects − Velocity, Variety, Volume, and Complexity.

Why MapReduce?

Traditional Enterprise Systems normally have a centralized server to store and

process data. The following illustration depicts a schematic view of a traditional

enterprise system. Traditional model is certainly not suitable to process huge

volumes of scalable data and cannot be accommodated by standard database

servers. Moreover, the centralized system creates too much of a bottleneck while

processing multiple files simultaneously.

Google solved this bottleneck issue using an algorithm called MapReduce.

MapReduce divides a task into small parts and assigns them to many computers.

Later, the results are collected at one place and integrated to form the result

dataset.

1. INTRODUCTION

 MapReduce

 2

How MapReduce Works?

The MapReduce algorithm contains two important tasks, namely Map and Reduce.

 The Map task takes a set of data and converts it into another set of data,

where individual elements are broken down into tuples (key-value pairs).

 The Reduce task takes the output from the Map as an input and combines

those data tuples (key-value pairs) into a smaller set of tuples.

The reduce task is always performed after the map job.

Let us now take a close look at each of the phases and try to understand their

significance.

 MapReduce

 3

 Input Phase − Here we have a Record Reader that translates each record

in an input file and sends the parsed data to the mapper in the form of key-

value pairs.

 Map − Map is a user-defined function, which takes a series of key-value

pairs and processes each one of them to generate zero or more key-value

pairs.

 Intermediate Keys − The key-value pairs generated by the mapper are

known as intermediate keys.

 Combiner − A combiner is a type of local Reducer that groups similar data

from the map phase into identifiable sets. It takes the intermediate keys

from the mapper as input and applies a user-defined code to aggregate the

values in a small scope of one mapper. It is not a part of the main

MapReduce algorithm; it is optional.

 Shuffle and Sort − The Reducer task starts with the Shuffle and Sort step.

It downloads the grouped key-value pairs onto the local machine, where

the Reducer is running. The individual key-value pairs are sorted by key

into a larger data list. The data list groups the equivalent keys together so

that their values can be iterated easily in the Reducer task.

 Reducer − The Reducer takes the grouped key-value paired data as input

and runs a Reducer function on each one of them. Here, the data can be

aggregated, filtered, and combined in a number of ways, and it requires a

wide range of processing. Once the execution is over, it gives zero or more

key-value pairs to the final step.

 Output Phase − In the output phase, we have an output formatter that

translates the final key-value pairs from the Reducer function and writes

them onto a file using a record writer.

Let us try to understand the two tasks Map & Reduce with the help of a small

diagram −

 MapReduce

 4

MapReduce-Example

Let us take a real-world example to comprehend the power of MapReduce. Twitter

receives around 500 million tweets per day, which is nearly 3000 tweets per

second. The following illustration shows how Tweeter manages its tweets with the

help of MapReduce.

As shown in the illustration, the MapReduce algorithm performs the following

actions −

 Tokenize − Tokenizes the tweets into maps of tokens and writes them as

key-value pairs.

 Filter − Filters unwanted words from the maps of tokens and writes the

filtered maps as key-value pairs.

 MapReduce

 5

 Count − Generates a token counter per word.

 Aggregate Counters − Prepares an aggregate of similar counter values

into small manageable units.

 MapReduce

 6

The MapReduce algorithm contains two important tasks, namely Map and Reduce.

 The map task is done by means of Mapper Class

 The reduce task is done by means of Reducer Class.

Mapper class takes the input, tokenizes it, maps, and sorts it. The output of

Mapper class is used as input by Reducer class, which in turn searches matching

pairs and reduces them.

MapReduce implements various mathematical algorithms to divide a task into

small parts and assign them to multiple systems. In technical terms, MapReduce

algorithm helps in sending the Map & Reduce tasks to appropriate servers in a

cluster.

These mathematical algorithms may include the following −

 Sorting

 Searching

 Indexing

 TF-IDF

Sorting

Sorting is one of the basic MapReduce algorithms to process and analyze data.

MapReduce implements sorting algorithm to automatically sort the output key-

value pairs from the mapper by their keys.

 Sorting methods are implemented in the mapper class itself.

2. ALGORITHM

 MapReduce

 7

 In the Shuffle and Sort phase, after tokenizing the values in the mapper

class, theContext class (user-defined class) collects the matching valued

keys as a collection.

 To collect similar key-value pairs (intermediate keys), the Mapper class

takes the help of RawComparator class to sort the key-value pairs.

 The set of intermediate key-value pairs for a given Reducer is automatically

sorted by Hadoop to form key-values (K2, {V2, V2…}) before they are

presented to the Reducer.

Searching

Searching plays an important role in MapReduce algorithm. It helps in the

combiner phase (optional) and in the Reducer phase. Let us try to understand how

Searching works with the help of an example.

Example

The following example shows how MapReduce employs Searching algorithm to

find out the details of the employee who draws the highest salary in a given

employee dataset.

 Let us assume we have employee data in four different files − A, B, C, and

D. Let us also assume there are duplicate employee records in all four files

because of importing the employee data from all database tables

repeatedly. See the following illustration.

 The Map phase processes each input file and provides the employee data

in key-value pairs (<k, v> : <emp name, salary>). See the following

illustration.

 MapReduce

 8

 The combiner phase (searching technique) will accept the input from the

Map phase as a key-value pair with employee name and salary. Using

searching technique, the combiner will check all the employee salary to find

the highest salaried employee in each file. See the following snippet.

<k: employee name, v: salary>

Max= the salary of an first employee. Treated as max salary

if(v(second employee).salary > Max){

 Max = v(salary);

}

else{

 Continue checking;

}

The expected result is as follows –

 Reducer phase − Form each file, you will find the highest salaried

employee. To avoid redundancy, check all the <k, v> pairs and eliminate

duplicate entries, if any. The same algorithm is used in between the four

<k, v> pairs, which are coming from four input files. The final output should

be as follows −

<gopal, 50000>

Indexing

Normally indexing is used to point to a particular data and its address. It performs

batch indexing on the input files for a particular Mapper.

The indexing technique that is normally used in MapReduce is known as inverted

index.Search engines like Google and Bing use inverted indexing technique. Let

us try to understand how Indexing works with the help of a simple example.

 MapReduce

 9

Example

The following text is the input for inverted indexing. Here T[0], T[1], and t[2] are

the file names and their content are in double quotes.

T[0] = "it is what it is"

T[1] = "what is it"

T[2] = "it is a banana"

After applying the Indexing algorithm, we get the following output −

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

Here "a": {2} implies the term "a" appears in the T[2] file. Similarly, "is": {0, 1,

2} implies the term "is" appears in the files T[0], T[1], and T[2].

TF-IDF

TF-IDF is a text processing algorithm which is short for Term Frequency − Inverse

Document Frequency. It is one of the common web analysis algorithms. Here, the

term 'frequency' refers to the number of times a term appears in a document.

Term Frequency (TF)

It measures how frequently a particular term occurs in a document. It is calculated

by the number of times a word appears in a document divided by the total number

of words in that document.

TF(the) = (Number of times term the ‘the’ appears in a document) /

(Total number of terms in the document)

Inverse Document Frequency (IDF)

It measures the importance of a term. It is calculated by the number of documents

in the text database divided by the number of documents where a specific term

appears.

While computing TF, all the terms are considered equally important. That means,

TF counts the term frequency for normal words like “is”, “a”, “what”, etc. Thus we

need to know the frequent terms while scaling up the rare ones, by computing the

following −

 MapReduce

 10

IDF(the) = log_e(Total number of documents / Number of documents with

term ‘the’ in it).

The algorithm is explained below with the help of a small example.

Example

Consider a document containing 1000 words, wherein the word hive appears 50

times. The TF for hive is then (50 / 1000) = 0.05.

Now, assume we have 10 million documents and the word hive appears in 1000

of these. Then, the IDF is calculated as log (10,000,000 / 1,000) = 4.

The TF-IDF weight is the product of these quantities − 0.05 × 4 = 0.20.

 MapReduce

 11

MapReduce works only on Linux flavored operating systems and it comes inbuilt

with a Hadoop Framework. We need to perform the following steps in order to

install Hadoop framework.

Verifying JAVA Installation

Java must be installed on your system before installing Hadoop. Use the following

command to check whether you have Java installed on your system.

$ java –version

If Java is already installed on your system, you get to see the following response:

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

In case you don’t have Java installed on your system, then follow the steps given

below.

Installing Java

Step 1

Download the latest version of Java from the following link − this link.

After downloading, you can locate the file jdk-7u71-linux-x64.tar.gz in your

Downloads folder.

Step 2

Use the following commands to extract the contents of jdk-7u71-linux-x64.gz.

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

3. INSTALLATION

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

 MapReduce

 12

Step 3

To make Java available to all the users, you have to move it to the location

“/usr/local/”. Go to root and type the following commands −

$ su

password:

mv jdk1.7.0_71 /usr/local/java

exit

Step 4

For setting up PATH and JAVA_HOME variables, add the following commands to

~/.bashrc file.

export JAVA_HOME=/usr/local/java

export PATH=$PATH:$JAVA_HOME/bin

Apply all the changes to the current running system.

$ source ~/.bashrc

Step 5

Use the following commands to configure Java alternatives −

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar

Now verify the installation using the command java -version from the terminal.

 MapReduce

 13

Verifying Hadoop Installation

Hadoop must be installed on your system before installing MapReduce. Let us

verify the Hadoop installation using the following command −

$ hadoop version

If Hadoop is already installed on your system, then you will get the following

response −

Hadoop 2.4.1

--

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768

Compiled by hortonmu on 2013-10-07T06:28Z

Compiled with protoc 2.5.0

From source with checksum 79e53ce7994d1628b240f09af91e1af4

If Hadoop is not installed on your system, then proceed with the following steps.

Downloading Hadoop

Download Hadoop 2.4.1 from Apache Software Foundation and extract its contents

using the following commands.

$ su

password:

cd /usr/local

wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/

hadoop-2.4.1.tar.gz

tar xzf hadoop-2.4.1.tar.gz

mv hadoop-2.4.1/* to hadoop/

exit

Installing Hadoop in Pseudo Distributed mode

The following steps are used to install Hadoop 2.4.1 in pseudo distributed mode.

Step 1 − Setting up Hadoop

You can set Hadoop environment variables by appending the following commands

to ~/.bashrc file.

export HADOOP_HOME=/usr/local/hadoop

 MapReduce

 14

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

Apply all the changes to the current running system.

$ source ~/.bashrc

Step 2 − Hadoop Configuration

You can find all the Hadoop configuration files in the location

“$HADOOP_HOME/etc/hadoop”. You need to make suitable changes in those

configuration files according to your Hadoop infrastructure.

$ cd $HADOOP_HOME/etc/hadoop

In order to develop Hadoop programs using Java, you have to reset the Java

environment variables in hadoop-env.sh file by replacing JAVA_HOME value with

the location of Java in your system.

export JAVA_HOME=/usr/local/java

You have to edit the following files to configure Hadoop −

 core-site.xml

 hdfs-site.xml

 yarn-site.xml

 mapred-site.xml

core-site.xml

core-site.xml contains the following information−

 Port number used for Hadoop instance

 Memory allocated for the file system

 Memory limit for storing the data

 Size of Read/Write buffers

 MapReduce

 15

Open the core-site.xml and add the following properties in between the

<configuration> and </configuration> tags.

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000 </value>

 </property>

</configuration>

hdfs-site.xml

hdfs-site.xml contains the following information −

 Value of replication data

 The namenode path

 The datanode path of your local file systems (the place where you want to

store the Hadoop infra)

Let us assume the following data.

dfs.replication (data replication value) = 1

(In the following path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file

system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

Open this file and add the following properties in between the <configuration>,

</configuration> tags.

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 MapReduce

 16

 <property>

 <name>dfs.name.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.data.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/datanode </value>

 </property>

</configuration>

Note − In the above file, all the property values are user-defined and you can

make changes according to your Hadoop infrastructure.

yarn-site.xml

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add

the following properties in between the <configuration>, </configuration> tags.

<configuration>

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

</configuration>

mapred-site.xml

This file is used to specify the MapReduce framework we are using. By default,

Hadoop contains a template of yarn-site.xml. First of all, you need to copy the file

from mapred-site.xml.template to mapred-site.xml file using the following

command.

$ cp mapred-site.xml.template mapred-site.xml

Open mapred-site.xml file and add the following properties in between the

<configuration>, </configuration> tags.

 MapReduce

 17

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

Verifying Hadoop Installation

The following steps are used to verify the Hadoop installation.

Step 1 − Name Node Setup

Set up the namenode using the command “hdfs namenode -format” as follows −

$ cd ~

$ hdfs namenode -format

The expected result is as follows −

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:

/**

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = localhost/192.168.1.11

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 2.4.1

...

...

10/24/14 21:30:56 INFO common.Storage: Storage directory

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to

retain 1 images with txid >= 0

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11

**/

 MapReduce

 18

Step 2 − Verifying Hadoop dfs

Execute the following command to start your Hadoop file system.

$ start-dfs.sh

The expected output is as follows −

10/24/14 21:37:56

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-namenode-localhost.out

localhost: starting datanode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

Step 3 − Verifying Yarn Script

The following command is used to start the yarn script. Executing this command

will start your yarn daemons.

$ start-yarn.sh

The expected output is as follows −

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out

localhost: starting node manager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

Step 4 − Accessing Hadoop on Browser

The default port number to access Hadoop is 50070. Use the following URL to get

Hadoop services on your browser.

http://localhost:50070/

 MapReduce

 19

The following screenshot shows the Hadoop browser.

Step 5 − Verify all Applications of a Cluster

The default port number to access all the applications of a cluster is 8088. Use the

following URL to use this service.

http://localhost:8088/

The following screenshot shows a Hadoop cluster browser.

 MapReduce

 20

In this chapter, we will take a close look at the classes and their methods that are

involved in the operations of MapReduce programming. We will primarily keep our

focus on the following −

 JobContext Interface

 Job Class

 Mapper Class

 Reducer Class

JobContext Interface

The JobContext interface is the super interface for all the classes, which defines

different jobs in MapReduce. It gives you a read-only view of the job that is

provided to the tasks while they are running.

The following are the sub-interfaces of JobContext interface.

S.No. Subinterface Description

1. MapContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

Defines the context that is given to the Mapper.

2. ReduceContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

Defines the context that is passed to the Reducer.

Job class is the main class that implements the JobContext interface.

Job Class

The Job class is the most important class in the MapReduce API. It allows the user

to configure the job, submit it, control its execution, and query the state. The set

methods only work until the job is submitted, afterwards they will throw an

IllegalStateException.

Normally, the user creates the application, describes the various facets of the job,

and then submits the job and monitors its progress.

Here is an example of how to submit a job −

4. API

 MapReduce

 21

// Create a new Job

Job job = new Job(new Configuration());

job.setJarByClass(MyJob.class);

// Specify various job-specific parameters

job.setJobName("myjob");

job.setInputPath(new Path("in"));

job.setOutputPath(new Path("out"));

job.setMapperClass(MyJob.MyMapper.class);

job.setReducerClass(MyJob.MyReducer.class);

// Submit the job, then poll for progress until the job is complete

job.waitForCompletion(true);

Constructors

Following are the constructor summary of Job class.

S.No Constructor Summary

1 Job()

2 Job(Configuration conf)

3 Job(Configuration conf, String jobName)

Methods

Some of the important methods of Job class are as follows −

S.No Method Description

1 getJobName()

User-specified job name.

2 getJobState()

 MapReduce

 22

Returns the current state of the Job.

3 isComplete()

Checks if the job is finished or not.

4 setInputFormatClass()

Sets the InputFormat for the job.

5 setJobName(String name)

Sets the user-specified job name.

6 setOutputFormatClass()

Sets the Output Format for the job.

7 setMapperClass(Class)

Sets the Mapper for the job.

8 setReducerClass(Class)

Sets the Reducer for the job.

9 setPartitionerClass(Class)

Sets the Partitioner for the job.

10 setCombinerClass(Class)

Sets the Combiner for the job.

Mapper Class

The Mapper class defines the Map job. Maps input key-value pairs to a set of

intermediate key-value pairs. Maps are the individual tasks that transform the

input records into intermediate records. The transformed intermediate records

need not be of the same type as the input records. A given input pair may map to

zero or many output pairs.

 MapReduce

 23

Method

map is the most prominent method of the Mapper class. The syntax is defined

below −

map(KEYIN key, VALUEIN value, org.apache.hadoop.mapreduce.Mapper.Context

context)

This method is called once for each key-value pair in the input split.

Reducer Class

The Reducer class defines the Reduce job in MapReduce. It reduces a set of

intermediate values that share a key to a smaller set of values. Reducer

implementations can access the Configuration for a job via the

JobContext.getConfiguration() method. A Reducer has three primary phases −

Shuffle, Sort, and Reduce.

 Shuffle − The Reducer copies the sorted output from each Mapper using

HTTP across the network.

 Sort − The framework merge-sorts the Reducer inputs by keys (since

different Mappers may have output the same key). The shuffle and sort

phases occur simultaneously, i.e., while outputs are being fetched, they are

merged.

 Reduce − In this phase the reduce (Object, Iterable, Context) method is

called for each <key, (collection of values)> in the sorted inputs.

Method

reduce is the most prominent method of the Reducer class. The syntax is defined

below −

reduce(KEYIN key, Iterable<VALUEIN> values,

org.apache.hadoop.mapreduce.Reducer.Context context)

This method is called once for each key on the collection of key-value pairs.

 MapReduce

 24

MapReduce is a framework that is used for writing applications to process huge

volumes of data on large clusters of commodity hardware in a reliable manner.

This chapter takes you through the operation of MapReduce in Hadoop framework

using Java.

MapReduce Algorithm

Generally MapReduce paradigm is based on sending map-reduce programs to

computers where the actual data resides.

 During a MapReduce job, Hadoop sends Map and Reduce tasks to

appropriate servers in the cluster.

 The framework manages all the details of data-passing like issuing tasks,

verifying task completion, and copying data around the cluster between the

nodes.

 Most of the computing takes place on the nodes with data on local disks

that reduces the network traffic.

 After completing a given task, the cluster collects and reduces the data to

form an appropriate result, and sends it back to the Hadoop server.

Inputs and Outputs (Java Perspective)

The MapReduce framework operates on key-value pairs, that is, the framework

views the input to the job as a set of key-value pairs and produces a set of key-

value pair as the output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence, it

is required to implement the Writable interface. Additionally, the key classes have

5. HADOOP IMPLEMENTATION

 MapReduce

 25

to implement the WritableComparable interface to facilitate sorting by the

framework.

Both the input and output format of a MapReduce job are in the form of key-value

pairs −

(Input) <k1, v1> -> map -> <k2, v2>-> reduce -> <k3, v3> (Output).

 Input Output

Map <k1, v1> list (<k2, v2>)

Reduce <k2, list(v2)> list (<k3, v3>)

MapReduce Implementation

The following table shows the data regarding the electrical consumption of an

organization. The table includes the monthly electrical consumption and the

annual average for five consecutive years.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

We need to write applications to process the input data in the given table to find

the year of maximum usage, the year of minimum usage, and so on. This task is

easy for programmers with finite amount of records, as they will simply write the

logic to produce the required output, and pass the data to the written application.

Let us now raise the scale of the input data. Assume we have to analyze the

electrical consumption of all the large-scale industries of a particular state. When

we write applications to process such bulk data,

 MapReduce

 26

 They will take a lot of time to execute.

 There will be heavy network traffic when we move data from the source to

the network server.

To solve these problems, we have the MapReduce framework.

Input Data

The above data is saved as sample.txt and given as input. The input file looks as

shown below.

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

Example Program

The following program for the sample data uses MapReduce framework.

package hadoop;

import java.util.*;

import java.io.IOException;

import java.io.IOException;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

import org.apache.hadoop.util.*;

public class ProcessUnits

{

 //Mapper class

 public static class E_EMapper extends MapReduceBase implements

 MapReduce

 27

 Mapper<LongWritable, /*Input key Type */

 Text, /*Input value Type*/

 Text, /*Output key Type*/

 IntWritable> /*Output value Type*/

 {

 //Map function

 public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, Reporter reporter) throws

IOException

 {

 String line = value.toString();

 String lasttoken = null;

 StringTokenizer s = new StringTokenizer(line,"\t");

 String year = s.nextToken();

 while(s.hasMoreTokens()){

 lasttoken=s.nextToken();

 }

 int avgprice = Integer.parseInt(lasttoken);

 output.collect(new Text(year), new IntWritable(avgprice));

 }

 }

 //Reducer class

 public static class E_EReduce extends MapReduceBase implements

 Reducer< Text, IntWritable, Text, IntWritable >

 {

 //Reduce function

 public void reduce(Text key, Iterator <IntWritable> values,

OutputCollector>Text, IntWritable> output, Reporter reporter) throws

IOException

 {

 int maxavg=30;

 MapReduce

 28

 int val=Integer.MIN_VALUE;

 while (values.hasNext())

 {

 if((val=values.next().get())>maxavg)

 {

 output.collect(key, new IntWritable(val));

 }

 }

 }

 }

 //Main function

 public static void main(String args[])throws Exception

 {

 JobConf conf = new JobConf(Eleunits.class);

 conf.setJobName("max_eletricityunits");

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(E_EMapper.class);

 conf.setCombinerClass(E_EReduce.class);

 conf.setReducerClass(E_EReduce.class);

 conf.setInputFormat(TextInputFormat.class);

 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 JobClient.runJob(conf);

 }

 MapReduce

 29

}

Save the above program into ProcessUnits.java. The compilation and execution

of the program is given below.

Compilation and Execution of ProcessUnits Program

Let us assume we are in the home directory of Hadoop user (e.g. /home/hadoop).

Follow the steps given below to compile and execute the above program.

Step 1 − Use the following command to create a directory to store the compiled

java classes.

$ mkdir units

Step 2 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute

the MapReduce program. Download the jar from mvnrepository.com. Let us

assume the download folder is /home/hadoop/.

Step 3 − The following commands are used to compile the ProcessUnits.java

program and to create a jar for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java

$ jar -cvf units.jar -C units/ .

Step 4 − The following command is used to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 5 − The following command is used to copy the input file

named sample.txt in the input directory of HDFS.

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir

Step 6 − The following command is used to verify the files in the input directory

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 7 − The following command is used to run the Eleunit_max application by

taking input files from the input directory.

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir

output_dir

Wait for a while till the file gets executed. After execution, the output contains a

number of input splits, Map tasks, Reducer tasks, etc.

INFO mapreduce.Job: Job job_1414748220717_0002

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1

 MapReduce

 30

completed successfully

14/10/31 06:02:52

INFO mapreduce.Job: Counters: 49

File System Counters

 FILE: Number of bytes read=61

 FILE: Number of bytes written=279400

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=546

 HDFS: Number of bytes written=40

 HDFS: Number of read operations=9

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=2 Job Counters

 Launched map tasks=2

 Launched reduce tasks=1

 Data-local map tasks=2

 Total time spent by all maps in occupied slots (ms)=146137

 Total time spent by all reduces in occupied slots (ms)=441

 Total time spent by all map tasks (ms)=14613

 Total time spent by all reduce tasks (ms)=44120

 Total vcore-seconds taken by all map tasks=146137

 Total vcore-seconds taken by all reduce tasks=44120

 Total megabyte-seconds taken by all map tasks=149644288

 Total megabyte-seconds taken by all reduce tasks=45178880

Map-Reduce Framework

 MapReduce

 31

 Map input records=5

 Map output records=5

 Map output bytes=45

 Map output materialized bytes=67

 Input split bytes=208

 Combine input records=5

 Combine output records=5

 Reduce input groups=5

 Reduce shuffle bytes=6

 Reduce input records=5

 Reduce output records=5

 Spilled Records=10

 Shuffled Maps =2

 Failed Shuffles=0

 Merged Map outputs=2

 GC time elapsed (ms)=948

 CPU time spent (ms)=5160

 Physical memory (bytes) snapshot=47749120

 Virtual memory (bytes) snapshot=2899349504

 Total committed heap usage (bytes)=277684224

File Output Format Counters

 Bytes Written=40

Step 8 − The following command is used to verify the resultant files in the output

folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

 MapReduce

 32

Step 9 − The following command is used to see the output in Part-00000 file.

This file is generated by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Following is the output generated by the MapReduce program –

1981 34

1984 40

1985 45

Step 10 − The following command is used to copy the output folder from HDFS

to the local file system.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs -

get output_dir /home/hadoop

 MapReduce

 33

A partitioner works like a condition in processing an input dataset. The partition

phase takes place after the Map phase and before the Reduce phase.

The number of partitioners is equal to the number of reducers. That means a

partitioner will divide the data according to the number of reducers. Therefore,

the data passed from a single partitioner is processed by a single Reducer.

Partitioner

A partitioner partitions the key-value pairs of intermediate Map-outputs. It

partitions the data using a user-defined condition, which works like a hash

function. The total number of partitions is same as the number of Reducer tasks

for the job. Let us take an example to understand how the partitioner works.

MapReduce Partitioner Implementation

For the sake of convenience, let us assume we have a small table called Employee

with the following data. We will use this sample data as our input dataset to

demonstrate how the partitioner works.

Id Name Age Gender Salary

1201 gopal 45 Male 50,000

1202 manisha 40 Female 50,000

1203 khalil 34 Male 30,000

1204 prasanth 30 Male 30,000

1205 kiran 20 Male 40,000

1206 laxmi 25 Female 35,000

1207 bhavya 20 Female 15,000

1208 reshma 19 Female 15,000

6. PARTITIONER

 MapReduce

 34

1209 kranthi 22 Male 22,000

1210 Satish 24 Male 25,000

1211 Krishna 25 Male 25,000

1212 Arshad 28 Male 20,000

1213 lavanya 18 Female 8,000

We have to write an application to process the input dataset to find the highest

salaried employee by gender in different age groups (for example, below 20,

between 21 to 30, above 30).

Input Data

The above data is saved as input.txt in the “/home/hadoop/hadoopPartitioner”

directory and given as input.

1201 gopal 45 Male 50000

1202 manisha 40 Female 51000

1203 khaleel 34 Male 30000

1204 prasanth 30 Male 31000

1205 kiran 20 Male 40000

1206 laxmi 25 Female 35000

1207 bhavya 20 Female 15000

1208 reshma 19 Female 14000

1209 kranthi 22 Male 22000

1210 Satish 24 Male 25000

1211 Krishna 25 Male 26000

1212 Arshad 28 Male 20000

1213 lavanya 18 Female 8000

 MapReduce

 35

Based on the given input, following is the algorithmic explanation of the program.

Map Tasks

The map task accepts the key-value pairs as input while we have the text data in

a text file. The input for this map task is as follows −

Input − The key would be a pattern such as “any special key + filename + line

number” (example: key = @input1) and the value would be the data in that line

(example: value = 1201 \t gopal \t 45 \t Male \t 50000).

Method − The operation of this map task is as follows −

 Read the value (record data), which comes as input value from the

argument list in a string.

 Using the split function, separate the gender and store in a string variable.

String[] str = value.toString().split("\t", -3);

String gender=str[3];

 Send the gender information and the record data value as output key-

value pair from the map task to the partition task.

context.write(new Text(gender), new Text(value));

 Repeat all the above steps for all the records in the text file.

Output − You will get the gender data and the record data value as key-value

pairs.

Partitioner Task

The partitioner task accepts the key-value pairs from the map task as its input.

Partition implies dividing the data into segments. According to the given

conditional criteria of partitions, the input key-value paired data can be divided

into three parts based on the age criteria.

Input − The whole data in a collection of key-value pairs.

key = Gender field value in the record.

value = Whole record data value of that gender.

Method − The process of partition logic runs as follows.

 Read the age field value from the input key-value pair.

String[] str = value.toString().split("\t");

int age = Integer.parseInt(str[2]);

 MapReduce

 36

 Check the age value with the following conditions.

 Age less than or equal to 20

 Age Greater than 20 and Less than or equal to 30.

 Age Greater than 30.

if(age<=20)

{

 return 0;

}

else if(age>20 && age<=30)

{

 return 1 % numReduceTasks;

}

else

{

 return 2 % numReduceTasks;

}

Output − The whole data of key-value pairs are segmented into three collections

of key-value pairs. The Reducer works individually on each collection.

Reduce Tasks

The number of partitioner tasks is equal to the number of reducer tasks. Here we

have three partitioner tasks and hence we have three Reducer tasks to be

executed.

Input − The Reducer will execute three times with different collection of key-

value pairs.

key = gender field value in the record.

value = the whole record data of that gender.

Method − The following logic will be applied on each collection.

 Read the Salary field value of each record.

String [] str = val.toString().split("\t", -3);

Note: str[4] have the salary field value.

 Check the salary with the max variable. If str[4] is the max salary, then

assign str[4] to max, otherwise skip the step.

if(Integer.parseInt(str[4])>max)

 MapReduce

 37

{

 max=Integer.parseInt(str[4]);

}

 Repeat Steps 1 and 2 for each key collection (Male & Female are the key

collections). After executing these three steps, you will find one max salary

from the Male key collection and one max salary from the Female key

collection.

context.write(new Text(key), new IntWritable(max));

Output − Finally, you will get a set of key-value pair data in three collections of

different age groups. It contains the max salary from the Male collection and the

max salary from the Female collection in each age group respectively.

After executing the Map, the Partitioner, and the Reduce tasks, the three

collections of key-value pair data are stored in three different files as the output.

All the three tasks are treated as MapReduce jobs. The following requirements and

specifications of these jobs should be specified in the Configurations −

 Job name

 Input and Output formats of keys and values

 Individual classes for Map, Reduce, and Partitioner tasks

Configuration conf = getConf();

//Create Job

Job job = new Job(conf, "topsal");

job.setJarByClass(PartitionerExample.class);

// File Input and Output paths

FileInputFormat.setInputPaths(job, new Path(arg[0]));

FileOutputFormat.setOutputPath(job,new Path(arg[1]));

//Set Mapper class and Output format for key-value pair.

job.setMapperClass(MapClass.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

//set partitioner statement

job.setPartitionerClass(CaderPartitioner.class);

 MapReduce

 38

//Set Reducer class and Input/Output format for key-value pair.

job.setReducerClass(ReduceClass.class);

//Number of Reducer tasks.

job.setNumReduceTasks(3);

//Input and Output format for data

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(Text.class);

Example Program

The following program shows how to implement the partitioners for the given

criteria in a MapReduce program.

package partitionerexample;

import java.io.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.mapreduce.lib.input.*;

import org.apache.hadoop.mapreduce.lib.output.*;

import org.apache.hadoop.util.*;

public class PartitionerExample extends Configured implements Tool

{

 //Map class

 MapReduce

 39

 public static class MapClass extends Mapper<LongWritable,Text,Text,Text>

 {

 public void map(LongWritable key, Text value, Context context)

 {

 try{

 String[] str = value.toString().split("\t", -3);

 String gender=str[3];

 context.write(new Text(gender), new Text(value));

 }

 catch(Exception e)

 {

 System.out.println(e.getMessage());

 }

 }

 }

 //Reducer class

 public static class ReduceClass extends Reducer<Text,Text,Text,IntWritable>

 {

 public int max = -1;

 public void reduce(Text key, Iterable <Text> values, Context

context) throws IOException, InterruptedException

 {

 max = -1;

 for (Text val : values)

 {

 String [] str = val.toString().split("\t", -3);

 if(Integer.parseInt(str[4])>max)

 max=Integer.parseInt(str[4]);

 }

 context.write(new Text(key), new IntWritable(max));

 MapReduce

 40

 }

 }

 //Partitioner class

 public static class CaderPartitioner extends

 Partitioner < Text, Text >

 {

 @Override

 public int getPartition(Text key, Text value, int numReduceTasks)

 {

 String[] str = value.toString().split("\t");

 int age = Integer.parseInt(str[2]);

 if(numReduceTasks == 0)

 {

 return 0;

 }

 if(age<=20)

 {

 return 0;

 }

 else if(age>20 && age<=30)

 {

 return 1 % numReduceTasks;

 }

 else

 {

 return 2 % numReduceTasks;

 }

 }

 }

 @Override

 MapReduce

 41

 public int run(String[] arg) throws Exception

 {

 Configuration conf = getConf();

 Job job = new Job(conf, "topsal");

 job.setJarByClass(PartitionerExample.class);

 FileInputFormat.setInputPaths(job, new Path(arg[0]));

 FileOutputFormat.setOutputPath(job,new Path(arg[1]));

 job.setMapperClass(MapClass.class);

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(Text.class);

 //set partitioner statement

 job.setPartitionerClass(CaderPartitioner.class);

 job.setReducerClass(ReduceClass.class);

 job.setNumReduceTasks(3);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(Text.class);

 System.exit(job.waitForCompletion(true)? 0 : 1);

 return 0;

 }

 public static void main(String ar[]) throws Exception

 {

 int res = ToolRunner.run(new Configuration(), new

PartitionerExample(),ar);

 System.exit(0);

 MapReduce

 42

 }

}

Save the above code as PartitionerExample.java in

“/home/hadoop/hadoopPartitioner”. The compilation and execution of the

program is given below.

Compilation and Execution

Let us assume we are in the home directory of the Hadoop user (for example,

/home/hadoop).

Follow the steps given below to compile and execute the above program.

Step 1 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute

the MapReduce program. You can download the jar from mvnrepository.com.

Let us assume the downloaded folder is “/home/hadoop/hadoopPartitioner”

Step 2 − The following commands are used for compiling the

programPartitionerExample.java and creating a jar for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d ProcessUnits.java

$ jar -cvf PartitionerExample.jar -C .

Step 3 − Use the following command to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 4 − Use the following command to copy the input file named input.txt in

the input directory of HDFS.

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/hadoopPartitioner/input.txt

input_dir

Step 5 − Use the following command to verify the files in the input directory.

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 6 − Use the following command to run the Top salary application by taking

input files from the input directory.

$HADOOP_HOME/bin/hadoop jar PartitionerExample.jar

partitionerexample.PartitionerExample input_dir/input.txt output_dir

Wait for a while till the file gets executed. After execution, the output contains a

number of input splits, map tasks, and Reducer tasks.

15/02/04 15:19:51 INFO mapreduce.Job: Job job_1423027269044_0021

completed successfully

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1

 MapReduce

 43

15/02/04 15:19:52 INFO mapreduce.Job: Counters: 49

File System Counters

 FILE: Number of bytes read=467

 FILE: Number of bytes written=426777

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 HDFS: Number of bytes read=480

 HDFS: Number of bytes written=72

 HDFS: Number of read operations=12

 HDFS: Number of large read operations=0

 HDFS: Number of write operations=6

Job Counters

 Launched map tasks=1

 Launched reduce tasks=3

 Data-local map tasks=1

 Total time spent by all maps in occupied slots (ms)=8212

 Total time spent by all reduces in occupied slots (ms)=59858

 Total time spent by all map tasks (ms)=8212

 Total time spent by all reduce tasks (ms)=59858

 Total vcore-seconds taken by all map tasks=8212

 Total vcore-seconds taken by all reduce tasks=59858

 Total megabyte-seconds taken by all map tasks=8409088

 Total megabyte-seconds taken by all reduce tasks=61294592

Map-Reduce Framework

 MapReduce

 44

 Map input records=13

 Map output records=13

 Map output bytes=423

 Map output materialized bytes=467

 Input split bytes=119

 Combine input records=0

 Combine output records=0

 Reduce input groups=6

 Reduce shuffle bytes=467

 Reduce input records=13

 Reduce output records=6

 Spilled Records=26

 Shuffled Maps =3

 Failed Shuffles=0

 Merged Map outputs=3

 GC time elapsed (ms)=224

 CPU time spent (ms)=3690

 Physical memory (bytes) snapshot=553816064

 Virtual memory (bytes) snapshot=3441266688

 Total committed heap usage (bytes)=334102528

Shuffle Errors

 BAD_ID=0

 CONNECTION=0

 IO_ERROR=0

 WRONG_LENGTH=0

 MapReduce

 45

 WRONG_MAP=0

 WRONG_REDUCE=0

File Input Format Counters

 Bytes Read=361

File Output Format Counters

 Bytes Written=72

Step 7 − Use the following command to verify the resultant files in the output

folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

You will find the output in three files because you are using three partitioners and

three Reducers in your program.

Step 8 − Use the following command to see the output in Part-00000 file. This

file is generated by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Output in Part-00000

Female 15000

Male 40000

Use the following command to see the output in Part-00001 file. .

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00001

Output in Part-00001

Female 35000

Male 31000

Use the following command to see the output in Part-00002 file.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00002

Output in Part-00002

Female 51000

 MapReduce

 46

Male 50000

 MapReduce

 47

A Combiner, also known as a semi-reducer, is an optional class that operates by

accepting the inputs from the Map class and thereafter passing the output key-

value pairs to the Reducer class.

The main function of a Combiner is to summarize the map output records with the

same key. The output (key-value collection) of the combiner will be sent over the

network to the actual Reducer task as input.

Combiner

The Combiner class is used in between the Map class and the Reduce class to

reduce the volume of data transfer between Map and Reduce. Usually, the output

of the map task is large and the data transferred to the reduce task is high.

The following MapReduce task diagram shows the COMBINER PHASE.

How Combiner Works?

Here is a brief summary on how MapReduce Combiner works −

 A combiner does not have a predefined interface and it must implement the

Reducer interface’s reduce() method.

7. COMBINERS

 MapReduce

 48

 A combiner operates on each map output key. It must have the same output

key-value types as the Reducer class.

 A combiner can produce summary information from a large dataset because

it replaces the original Map output.

Although, Combiner is optional yet it helps segregating data into multiple groups

for Reduce phase, which makes it easier to process.

MapReduce Combiner Implementation

The following example provides a theoretical idea about combiners. Let us assume

we have the following input text file named input.txt for MapReduce.

What do you mean by Object

What do you know about Java

What is Java Virtual Machine

How Java enabled High Performance

The important phases of the MapReduce program with Combiner are discussed

below.

Record Reader

This is the first phase of MapReduce where the Record Reader reads every line

from the input text file as text and yields output as key-value pairs.

Input − Line by line text from the input file.

Output − Forms the key-value pairs. The following is the set of expected key-

value pairs.

<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

Map Phase

The Map phase takes input from the Record Reader, processes it, and produces

the output as another set of key-value pairs.

Input − The following key-value pair is the input taken from the Record Reader.

<1, What do you mean by Object>

<2, What do you know about Java>

 MapReduce

 49

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

The Map phase reads each key-value pair, divides each word from the value using

StringTokenizer, treats each word as key and the count of that word as value. The

following code snippet shows the Mapper class and the map function.

public static class TokenizerMapper extends Mapper<Object, Text, Text,

IntWritable>

{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context) throws

IOException, InterruptedException

 {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens())

 {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

}

Output − The expected output is as follows −

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1>

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1>

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1>

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1>

Combiner Phase

The Combiner phase takes each key-value pair from the Map phase, processes it,

and produces the output as key-value collection pairs.

 MapReduce

 50

Input − The following key-value pair is the input taken from the Map phase.

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1>

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1>

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1>

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1>

The Combiner phase reads each key-value pair, combines the common words as

key and values as collection. Usually, the code and operation for a Combiner is

similar to that of a Reducer. Following is the code snippet for Mapper, Combiner

and Reducer class declaration.

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

Output − The expected output is as follows −

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1>

<know,1> <about,1> <Java,1,1,1>

<is,1> <Virtual,1> <Machine,1>

<How,1> <enabled,1> <High,1> <Performance,1>

Reducer Phase

The Reducer phase takes each key-value collection pair from the Combiner phase,

processes it, and passes the output as key-value pairs. Note that the Combiner

functionality is same as the Reducer.

Input − The following key-value pair is the input taken from the Combiner phase.

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1>

<know,1> <about,1> <Java,1,1,1>

<is,1> <Virtual,1> <Machine,1>

<How,1> <enabled,1> <High,1> <Performance,1>

The Reducer phase reads each key-value pair. Following is the code snippet for

the Combiner.

public static class IntSumReducer extends

Reducer<Text,IntWritable,Text,IntWritable>

{

 private IntWritable result = new IntWritable();

 MapReduce

 51

 public void reduce(Text key, Iterable<IntWritable> values,Context

context) throws IOException, InterruptedException

 {

 int sum = 0;

 for (IntWritable val : values)

 {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

}

Output − The expected output from the Reducer phase is as follows −

<What,3> <do,2> <you,2> <mean,1> <by,1> <Object,1>

<know,1> <about,1> <Java,3>

<is,1> <Virtual,1> <Machine,1>

<How,1> <enabled,1> <High,1> <Performance,1>

Record Writer

This is the last phase of MapReduce where the Record Writer writes every key-

value pair from the Reducer phase and sends the output as text.

Input − Each key-value pair from the Reducer phase along with the Output

format.

Output − It gives you the key-value pairs in text format. Following is the expected

output.

What 3

do 2

you 2

mean 1

by 1

Object 1

know 1

about 1

 MapReduce

 52

Java 3

is 1

Virtual 1

Machine 1

How 1

enabled 1

High 1

Performance 1

Example Program

The following code block counts the number of words in a program.

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static class TokenizerMapper extends Mapper<Object, Text,
Text, IntWritable>

 {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context) throws
IOException, InterruptedException

 MapReduce

 53

 {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens())

 {

 word.set(itr.nextToken());

 context.write(word, one);

 }

 }

 }

 public static class IntSumReducer extends

Reducer<Text,IntWritable,Text,IntWritable>

 {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values, Context

context) throws IOException, InterruptedException

 {

 int sum = 0;

 for (IntWritable val : values)

 {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

 }

 public static void main(String[] args) throws Exception

 {

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, "word count");

 job.setJarByClass(WordCount.class);

 job.setMapperClass(TokenizerMapper.class);

 job.setCombinerClass(IntSumReducer.class);

 MapReduce

 54

 job.setReducerClass(IntSumReducer.class);

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

Save the above program as WordCount.java. The compilation and execution of

the program is given below.

Compilation and Execution

Let us assume we are in the home directory of Hadoop user (for example,

/home/hadoop).

Follow the steps given below to compile and execute the above program.

Step 1 − Use the following command to create a directory to store the compiled

java classes.

$ mkdir units

Step 2 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute

the MapReduce program. You can download the jar from mvnrepository.com.

Let us assume the downloaded folder is /home/hadoop/.

Step 3 − Use the following commands to compile the WordCount.java program

and to create a jar for the program.

$ javac -classpath hadoop-core-1.2.1.jar -d units WordCount.java

$ jar -cvf units.jar -C units/ .

Step 4 − Use the following command to create an input directory in HDFS.

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir

Step 5 − Use the following command to copy the input file named input.txt in

the input directory of HDFS.

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1

 MapReduce

 55

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/input.txt input_dir

Step 6 − Use the following command to verify the files in the input directory.

$HADOOP_HOME/bin/hadoop fs -ls input_dir/

Step 7 − Use the following command to run the Word count application by taking

input files from the input directory.

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir

output_dir

Wait for a while till the file gets executed. After execution, the output contains a

number of input splits, Map tasks, and Reducer tasks.

Step 8 − Use the following command to verify the resultant files in the output

folder.

$HADOOP_HOME/bin/hadoop fs -ls output_dir/

Step 9 − Use the following command to see the output in Part-00000 file. This

file is generated by HDFS.

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

Following is the output generated by the MapReduce program.

What 3

do 2

you 2

mean 1

by 1

Object 1

know 1

about 1

Java 3

is 1

Virtual 1

Machine 1

How 1

enabled 1

High 1

Performance 1

 MapReduce

 56

This chapter explains Hadoop administration which includes both HDFS and

MapReduce administration.

 HDFS administration includes monitoring the HDFS file structure, locations,

and the updated files.

 MapReduce administration includes monitoring the list of applications,

configuration of nodes, application status, etc.

HDFS Monitoring

HDFS (Hadoop Distributed File System) contains the user directories, input files,

and output files. Use the MapReduce commands, put and get, for storing and

retrieving.

After starting the Hadoop framework (daemons) by passing the command “start-

all.sh” on “/$HADOOP_HOME/sbin”, pass the following URL to the browser

“http://localhost:50070”. You should see the following screen on your browser.

The following screenshot shows how to browse the browse HDFS.

8. HADOOP ADMINISTRATION

 MapReduce

 57

The following screenshot show the file structure of HDFS. It shows the files in the

“/user/hadoop” directory.

The following screenshot shows the Datanode information in a cluster. Here you

can find one node with its configurations and capacities.

 MapReduce

 58

MapReduce Job Monitoring

A MapReduce application is a collection of jobs (Map job, Combiner, Partitioner,

and Reduce job). It is mandatory to monitor and maintain the following −

 Configuration of datanode where the application is suitable.

 The number of datanodes and resources used per application.

To monitor all these things, it is imperative that we should have a user interface.

After starting the Hadoop framework by passing the command “start-all.sh” on

“/$HADOOP_HOME/sbin”, pass the following URL to the browser

“http://localhost:8080”. You should see the following screen on your browser.

 MapReduce

 59

In the above screenshot, the hand pointer is on the application ID. Just click on it

to find the following screen on your browser. It describes the following −

 On which user the current application is running

 The application name

 Type of that application

 Current status, Final status

 Application started time, elapsed (completed time), if it is complete at the

time of monitoring

 The history of this application, i.e., log information

 And finally, the node information, i.e., the nodes that participated in running

the application.

The following screenshot shows the details of a particular application −

 MapReduce

 60

The following screenshot describes the currently running nodes information. Here,

the screenshot contains only one node. A hand pointer shows the localhost address

of the running node.

