
MapReduce 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MapReduce 

  i 
 

About the Tutorial 

MapReduce is a programming paradigm that runs in the background of Hadoop to 

provide scalability and easy data-processing solutions. This tutorial explains the 

features of MapReduce and how it works to analyze Big Data. 

Audience 

This tutorial has been prepared for professionals aspiring to learn the basics of Big 

Data Analytics using the Hadoop Framework and become a Hadoop Developer. 

Software Professionals, Analytics Professionals, and ETL developers are the key 

beneficiaries of this course. 

Prerequisites 

It is expected that the readers of this tutorial have a good understanding of the 

basics of Core Java and that they have prior exposure to any of the Linux operating 

system flavors. 

Copyright & Disclaimer 

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials 

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, 

distribute or republish any contents or a part of contents of this e-book in any 

manner without written consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and as 

precisely as possible, however, the contents may contain inaccuracies or errors. 

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, 

timeliness or completeness of our website or its contents including this tutorial. If 

you discover any errors on our website or in this tutorial, please notify us at 

contact@tutorialspoint.com 
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MapReduce is a programming model for writing applications that can process Big 

Data in parallel on multiple nodes. MapReduce provides analytical capabilities for 

analyzing huge volumes of complex data. 

What is Big Data? 

Big Data is a collection of large datasets that cannot be processed using traditional 

computing techniques. For example, the volume of data Facebook or YouTube 

need require it to collect and manage on a daily basis, can fall under the category 

of Big Data. However, Big Data is not only about scale and volume, it also involves 

one or more of the following aspects − Velocity, Variety, Volume, and Complexity. 

Why MapReduce? 

Traditional Enterprise Systems normally have a centralized server to store and 

process data. The following illustration depicts a schematic view of a traditional 

enterprise system. Traditional model is certainly not suitable to process huge 

volumes of scalable data and cannot be accommodated by standard database 

servers. Moreover, the centralized system creates too much of a bottleneck while 

processing multiple files simultaneously. 

 
Google solved this bottleneck issue using an algorithm called MapReduce. 

MapReduce divides a task into small parts and assigns them to many computers. 

Later, the results are collected at one place and integrated to form the result 

dataset. 

 

 

  

 

  

1. INTRODUCTION 
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How MapReduce Works? 

The MapReduce algorithm contains two important tasks, namely Map and Reduce. 

 The Map task takes a set of data and converts it into another set of data, 

where individual elements are broken down into tuples (key-value pairs). 

 

 The Reduce task takes the output from the Map as an input and combines 

those data tuples (key-value pairs) into a smaller set of tuples. 

The reduce task is always performed after the map job. 

Let us now take a close look at each of the phases and try to understand their 

significance. 
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 Input Phase − Here we have a Record Reader that translates each record 

in an input file and sends the parsed data to the mapper in the form of key-

value pairs. 

 

 Map − Map is a user-defined function, which takes a series of key-value 

pairs and processes each one of them to generate zero or more key-value 

pairs. 

 

 Intermediate Keys − The key-value pairs generated by the mapper are 

known as intermediate keys. 

 

 Combiner − A combiner is a type of local Reducer that groups similar data 

from the map phase into identifiable sets. It takes the intermediate keys 

from the mapper as input and applies a user-defined code to aggregate the 

values in a small scope of one mapper. It is not a part of the main 

MapReduce algorithm; it is optional. 

 

 Shuffle and Sort − The Reducer task starts with the Shuffle and Sort step. 

It downloads the grouped key-value pairs onto the local machine, where 

the Reducer is running. The individual key-value pairs are sorted by key 

into a larger data list. The data list groups the equivalent keys together so 

that their values can be iterated easily in the Reducer task. 

 

 Reducer − The Reducer takes the grouped key-value paired data as input 

and runs a Reducer function on each one of them. Here, the data can be 

aggregated, filtered, and combined in a number of ways, and it requires a 

wide range of processing. Once the execution is over, it gives zero or more 

key-value pairs to the final step. 

 

 Output Phase − In the output phase, we have an output formatter that 

translates the final key-value pairs from the Reducer function and writes 

them onto a file using a record writer. 

Let us try to understand the two tasks Map & Reduce with the help of a small 

diagram − 
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MapReduce-Example 

Let us take a real-world example to comprehend the power of MapReduce. Twitter 

receives around 500 million tweets per day, which is nearly 3000 tweets per 

second. The following illustration shows how Tweeter manages its tweets with the 

help of MapReduce. 

 
 

As shown in the illustration, the MapReduce algorithm performs the following 

actions − 

 Tokenize − Tokenizes the tweets into maps of tokens and writes them as 

key-value pairs. 

 

 Filter − Filters unwanted words from the maps of tokens and writes the 

filtered maps as key-value pairs. 
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 Count − Generates a token counter per word. 

 

 Aggregate Counters − Prepares an aggregate of similar counter values 

into small manageable units. 
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The MapReduce algorithm contains two important tasks, namely Map and Reduce. 

 The map task is done by means of Mapper Class 

 

 The reduce task is done by means of Reducer Class. 

Mapper class takes the input, tokenizes it, maps, and sorts it. The output of 

Mapper class is used as input by Reducer class, which in turn searches matching 

pairs and reduces them. 

 
 

MapReduce implements various mathematical algorithms to divide a task into 

small parts and assign them to multiple systems. In technical terms, MapReduce 

algorithm helps in sending the Map & Reduce tasks to appropriate servers in a 

cluster. 

These mathematical algorithms may include the following − 

 Sorting 

 

 Searching 

 

 Indexing 

 

 TF-IDF 

Sorting 

Sorting is one of the basic MapReduce algorithms to process and analyze data. 

MapReduce implements sorting algorithm to automatically sort the output key-

value pairs from the mapper by their keys. 

 Sorting methods are implemented in the mapper class itself. 

 

2. ALGORITHM 
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 In the Shuffle and Sort phase, after tokenizing the values in the mapper 

class, theContext class (user-defined class) collects the matching valued 

keys as a collection. 

 

 To collect similar key-value pairs (intermediate keys), the Mapper class 

takes the help of RawComparator class to sort the key-value pairs. 

 

 The set of intermediate key-value pairs for a given Reducer is automatically 

sorted by Hadoop to form key-values (K2, {V2, V2…}) before they are 

presented to the Reducer. 

Searching 

Searching plays an important role in MapReduce algorithm. It helps in the 

combiner phase (optional) and in the Reducer phase. Let us try to understand how 

Searching works with the help of an example. 

Example 

The following example shows how MapReduce employs Searching algorithm to 

find out the details of the employee who draws the highest salary in a given 

employee dataset. 

 Let us assume we have employee data in four different files − A, B, C, and 

D. Let us also assume there are duplicate employee records in all four files 

because of importing the employee data from all database tables 

repeatedly. See the following illustration. 

 
 

 The Map phase processes each input file and provides the employee data 

in key-value pairs (<k, v> : <emp name, salary>). See the following 

illustration. 
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 The combiner phase (searching technique) will accept the input from the 

Map phase as a key-value pair with employee name and salary. Using 

searching technique, the combiner will check all the employee salary to find 

the highest salaried employee in each file. See the following snippet. 

<k: employee name, v: salary> 

Max= the salary of an first employee. Treated as max salary 

 

if(v(second employee).salary > Max){ 

   Max = v(salary); 

} 

 

else{ 

   Continue checking; 

} 

The expected result is as follows – 

 

 Reducer phase − Form each file, you will find the highest salaried 

employee. To avoid redundancy, check all the <k, v> pairs and eliminate 

duplicate entries, if any. The same algorithm is used in between the four 

<k, v> pairs, which are coming from four input files. The final output should 

be as follows − 

<gopal, 50000> 

Indexing 

Normally indexing is used to point to a particular data and its address. It performs 

batch indexing on the input files for a particular Mapper. 

The indexing technique that is normally used in MapReduce is known as inverted 

index.Search engines like Google and Bing use inverted indexing technique. Let 

us try to understand how Indexing works with the help of a simple example. 
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Example 

The following text is the input for inverted indexing. Here T[0], T[1], and t[2] are 

the file names and their content are in double quotes. 

T[0] = "it is what it is" 

T[1] = "what is it" 

T[2] = "it is a banana" 

After applying the Indexing algorithm, we get the following output − 

"a": {2} 

"banana": {2} 

"is": {0, 1, 2} 

"it": {0, 1, 2} 

"what": {0, 1} 

Here "a": {2} implies the term "a" appears in the T[2] file. Similarly, "is": {0, 1, 

2} implies the term "is" appears in the files T[0], T[1], and T[2]. 

TF-IDF 

TF-IDF is a text processing algorithm which is short for Term Frequency − Inverse 

Document Frequency. It is one of the common web analysis algorithms. Here, the 

term 'frequency' refers to the number of times a term appears in a document. 

Term Frequency (TF) 

It measures how frequently a particular term occurs in a document. It is calculated 

by the number of times a word appears in a document divided by the total number 

of words in that document. 

TF(the) = (Number of times term the ‘the’ appears in a document) / 

(Total number of terms in the document) 

Inverse Document Frequency (IDF) 

It measures the importance of a term. It is calculated by the number of documents 

in the text database divided by the number of documents where a specific term 

appears. 

While computing TF, all the terms are considered equally important. That means, 

TF counts the term frequency for normal words like “is”, “a”, “what”, etc. Thus we 

need to know the frequent terms while scaling up the rare ones, by computing the 

following − 
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IDF(the) = log_e(Total number of documents / Number of documents with 

term ‘the’ in it). 

The algorithm is explained below with the help of a small example. 

Example 

Consider a document containing 1000 words, wherein the word hive appears 50 

times. The TF for hive is then (50 / 1000) = 0.05. 

Now, assume we have 10 million documents and the word hive appears in 1000 

of these. Then, the IDF is calculated as log (10,000,000 / 1,000) = 4. 

The TF-IDF weight is the product of these quantities − 0.05 × 4 = 0.20. 
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MapReduce works only on Linux flavored operating systems and it comes inbuilt 

with a Hadoop Framework. We need to perform the following steps in order to 

install Hadoop framework. 

Verifying JAVA Installation 

Java must be installed on your system before installing Hadoop. Use the following 

command to check whether you have Java installed on your system. 

$ java –version 

If Java is already installed on your system, you get to see the following response: 

java version "1.7.0_71" 

Java(TM) SE Runtime Environment (build 1.7.0_71-b13) 

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode) 

In case you don’t have Java installed on your system, then follow the steps given 

below. 

Installing Java 

Step 1 

Download the latest version of Java from the following link − this link. 

After downloading, you can locate the file jdk-7u71-linux-x64.tar.gz in your 

Downloads folder. 

Step 2 

Use the following commands to extract the contents of jdk-7u71-linux-x64.gz. 

$ cd Downloads/ 

$ ls 

jdk-7u71-linux-x64.gz 

$ tar zxf jdk-7u71-linux-x64.gz 

$ ls 

jdk1.7.0_71 jdk-7u71-linux-x64.gz 

3. INSTALLATION 

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
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Step 3 

To make Java available to all the users, you have to move it to the location 

“/usr/local/”. Go to root and type the following commands − 

$ su 

password: 

# mv jdk1.7.0_71 /usr/local/java 

# exit 

Step 4 

For setting up PATH and JAVA_HOME variables, add the following commands to 

~/.bashrc file. 

export JAVA_HOME=/usr/local/java 

export PATH=$PATH:$JAVA_HOME/bin 

Apply all the changes to the current running system. 

$ source ~/.bashrc 

Step 5 

Use the following commands to configure Java alternatives − 

# alternatives --install /usr/bin/java java usr/local/java/bin/java 2 

 

# alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2 

 

# alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2 

 

# alternatives --set java usr/local/java/bin/java 

 

# alternatives --set javac usr/local/java/bin/javac 

 

# alternatives --set jar usr/local/java/bin/jar 

Now verify the installation using the command java -version from the terminal. 
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Verifying Hadoop Installation 

Hadoop must be installed on your system before installing MapReduce. Let us 

verify the Hadoop installation using the following command − 

$ hadoop version 

If Hadoop is already installed on your system, then you will get the following 

response − 

Hadoop 2.4.1 

-- 

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768 

Compiled by hortonmu on 2013-10-07T06:28Z 

Compiled with protoc 2.5.0 

From source with checksum 79e53ce7994d1628b240f09af91e1af4 

If Hadoop is not installed on your system, then proceed with the following steps. 

Downloading Hadoop 

Download Hadoop 2.4.1 from Apache Software Foundation and extract its contents 

using the following commands. 

$ su 

password: 

# cd /usr/local 

# wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/ 

hadoop-2.4.1.tar.gz 

# tar xzf hadoop-2.4.1.tar.gz 

# mv hadoop-2.4.1/* to hadoop/ 

# exit 

Installing Hadoop in Pseudo Distributed mode 

The following steps are used to install Hadoop 2.4.1 in pseudo distributed mode. 

Step 1 − Setting up Hadoop 

You can set Hadoop environment variables by appending the following commands 

to ~/.bashrc file. 

export HADOOP_HOME=/usr/local/hadoop 
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export HADOOP_MAPRED_HOME=$HADOOP_HOME 

export HADOOP_COMMON_HOME=$HADOOP_HOME 

export HADOOP_HDFS_HOME=$HADOOP_HOME 

export YARN_HOME=$HADOOP_HOME 

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin 

Apply all the changes to the current running system. 

$ source ~/.bashrc 

Step 2 − Hadoop Configuration 

You can find all the Hadoop configuration files in the location 

“$HADOOP_HOME/etc/hadoop”. You need to make suitable changes in those 

configuration files according to your Hadoop infrastructure. 

$ cd $HADOOP_HOME/etc/hadoop 

In order to develop Hadoop programs using Java, you have to reset the Java 

environment variables in hadoop-env.sh file by replacing JAVA_HOME value with 

the location of Java in your system. 

export JAVA_HOME=/usr/local/java 

You have to edit the following files to configure Hadoop − 

 core-site.xml 

 

 hdfs-site.xml 

 

 yarn-site.xml 

 

 mapred-site.xml 

core-site.xml 

core-site.xml contains the following information− 

 Port number used for Hadoop instance 

 

 Memory allocated for the file system 

 

 Memory limit for storing the data 

 

 Size of Read/Write buffers 
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Open the core-site.xml and add the following properties in between the 

<configuration> and </configuration> tags. 

<configuration> 

   <property> 

      <name>fs.default.name</name> 

      <value>hdfs://localhost:9000 </value> 

   </property> 

</configuration> 

hdfs-site.xml 

hdfs-site.xml contains the following information − 

 Value of replication data 

 

 The namenode path 

 

 The datanode path of your local file systems (the place where you want to 

store the Hadoop infra) 

Let us assume the following data. 

dfs.replication (data replication value) = 1 

 

(In the following path /hadoop/ is the user name. 

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.) 

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode 

 

(hadoopinfra/hdfs/datanode is the directory created by hdfs file 

system.) 

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode 

Open this file and add the following properties in between the <configuration>, 

</configuration> tags. 

<configuration> 

 

   <property> 

      <name>dfs.replication</name> 

      <value>1</value> 

   </property> 
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   <property> 

      <name>dfs.name.dir</name> 

      <value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value> 

   </property> 

    

   <property> 

      <name>dfs.data.dir</name> 

      <value>file:///home/hadoop/hadoopinfra/hdfs/datanode </value> 

   </property> 

    

</configuration> 

Note − In the above file, all the property values are user-defined and you can 

make changes according to your Hadoop infrastructure. 

yarn-site.xml 

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add 

the following properties in between the <configuration>, </configuration> tags. 

<configuration> 

   <property> 

      <name>yarn.nodemanager.aux-services</name> 

      <value>mapreduce_shuffle</value> 

   </property> 

</configuration> 

mapred-site.xml 

This file is used to specify the MapReduce framework we are using. By default, 

Hadoop contains a template of yarn-site.xml. First of all, you need to copy the file 

from mapred-site.xml.template to mapred-site.xml file using the following 

command. 

$ cp mapred-site.xml.template mapred-site.xml 

Open mapred-site.xml file and add the following properties in between the 

<configuration>, </configuration> tags. 
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<configuration> 

   <property> 

      <name>mapreduce.framework.name</name> 

      <value>yarn</value> 

   </property> 

</configuration> 

Verifying Hadoop Installation 

The following steps are used to verify the Hadoop installation. 

Step 1 − Name Node Setup 

Set up the namenode using the command “hdfs namenode -format” as follows − 

$ cd ~ 

$ hdfs namenode -format 

The expected result is as follows − 

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG: 

/************************************************************ 

STARTUP_MSG: Starting NameNode 

STARTUP_MSG: host = localhost/192.168.1.11 

STARTUP_MSG: args = [-format] 

STARTUP_MSG: version = 2.4.1 

... 

... 

10/24/14 21:30:56 INFO common.Storage: Storage directory 

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted. 

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to 

retain 1 images with txid >= 0 

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0 

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG: 

 

/************************************************************ 

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11 

************************************************************/ 
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Step 2 − Verifying Hadoop dfs 

Execute the following command to start your Hadoop file system. 

$ start-dfs.sh 

The expected output is as follows − 

10/24/14 21:37:56 

Starting namenodes on [localhost] 

localhost: starting namenode, logging to /home/hadoop/hadoop- 

2.4.1/logs/hadoop-hadoop-namenode-localhost.out 

localhost: starting datanode, logging to /home/hadoop/hadoop- 

2.4.1/logs/hadoop-hadoop-datanode-localhost.out 

Starting secondary namenodes [0.0.0.0] 

Step 3 − Verifying Yarn Script 

The following command is used to start the yarn script. Executing this command 

will start your yarn daemons. 

$ start-yarn.sh 

The expected output is as follows − 

starting yarn daemons 

starting resourcemanager, logging to /home/hadoop/hadoop- 

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out 

localhost: starting node manager, logging to /home/hadoop/hadoop- 

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out 

Step 4 − Accessing Hadoop on Browser 

The default port number to access Hadoop is 50070. Use the following URL to get 

Hadoop services on your browser. 

http://localhost:50070/ 
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The following screenshot shows the Hadoop browser. 

 

Step 5 − Verify all Applications of a Cluster 

The default port number to access all the applications of a cluster is 8088. Use the 

following URL to use this service. 

http://localhost:8088/ 

The following screenshot shows a Hadoop cluster browser. 
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In this chapter, we will take a close look at the classes and their methods that are 

involved in the operations of MapReduce programming. We will primarily keep our 

focus on the following − 

 JobContext Interface 

 

 Job Class 

 

 Mapper Class 

 

 Reducer Class 

JobContext Interface 

The JobContext interface is the super interface for all the classes, which defines 

different jobs in MapReduce. It gives you a read-only view of the job that is 

provided to the tasks while they are running. 

The following are the sub-interfaces of JobContext interface. 

S.No. Subinterface Description 

1. MapContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 

Defines the context that is given to the Mapper. 

2. ReduceContext<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 

Defines the context that is passed to the Reducer. 

Job class is the main class that implements the JobContext interface. 

Job Class 

The Job class is the most important class in the MapReduce API. It allows the user 

to configure the job, submit it, control its execution, and query the state. The set 

methods only work until the job is submitted, afterwards they will throw an 

IllegalStateException. 

Normally, the user creates the application, describes the various facets of the job, 

and then submits the job and monitors its progress. 

Here is an example of how to submit a job − 

4. API 
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// Create a new Job 

Job job = new Job(new Configuration()); 

job.setJarByClass(MyJob.class); 

 

// Specify various job-specific parameters 

job.setJobName("myjob"); 

job.setInputPath(new Path("in")); 

job.setOutputPath(new Path("out")); 

 

job.setMapperClass(MyJob.MyMapper.class); 

job.setReducerClass(MyJob.MyReducer.class); 

 

// Submit the job, then poll for progress until the job is complete 

job.waitForCompletion(true); 

Constructors 

Following are the constructor summary of Job class. 

S.No Constructor Summary 

1 Job() 

2 Job(Configuration conf) 

3 Job(Configuration conf, String jobName) 

Methods 

Some of the important methods of Job class are as follows − 

S.No Method Description 

1 getJobName() 

User-specified job name. 

2 getJobState() 
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Returns the current state of the Job. 

3 isComplete() 

Checks if the job is finished or not. 

4 setInputFormatClass() 

Sets the InputFormat for the job. 

5 setJobName(String name) 

Sets the user-specified job name. 

6 setOutputFormatClass() 

Sets the Output Format for the job. 

7 setMapperClass(Class) 

Sets the Mapper for the job. 

8 setReducerClass(Class) 

Sets the Reducer for the job. 

9 setPartitionerClass(Class) 

Sets the Partitioner for the job. 

10 setCombinerClass(Class) 

Sets the Combiner for the job. 

Mapper Class 

The Mapper class defines the Map job. Maps input key-value pairs to a set of 

intermediate key-value pairs. Maps are the individual tasks that transform the 

input records into intermediate records. The transformed intermediate records 

need not be of the same type as the input records. A given input pair may map to 

zero or many output pairs. 
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Method 

map is the most prominent method of the Mapper class. The syntax is defined 

below − 

map(KEYIN key, VALUEIN value, org.apache.hadoop.mapreduce.Mapper.Context 

context) 

This method is called once for each key-value pair in the input split. 

Reducer Class 

The Reducer class defines the Reduce job in MapReduce. It reduces a set of 

intermediate values that share a key to a smaller set of values. Reducer 

implementations can access the Configuration for a job via the 

JobContext.getConfiguration() method. A Reducer has three primary phases − 

Shuffle, Sort, and Reduce. 

 Shuffle − The Reducer copies the sorted output from each Mapper using 

HTTP across the network. 

 

 Sort − The framework merge-sorts the Reducer inputs by keys (since 

different Mappers may have output the same key). The shuffle and sort 

phases occur simultaneously, i.e., while outputs are being fetched, they are 

merged. 

 

 Reduce − In this phase the reduce (Object, Iterable, Context) method is 

called for each <key, (collection of values)> in the sorted inputs. 

Method 

reduce is the most prominent method of the Reducer class. The syntax is defined 

below − 

reduce(KEYIN key, Iterable<VALUEIN> values, 

org.apache.hadoop.mapreduce.Reducer.Context context) 

This method is called once for each key on the collection of key-value pairs. 
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MapReduce is a framework that is used for writing applications to process huge 

volumes of data on large clusters of commodity hardware in a reliable manner. 

This chapter takes you through the operation of MapReduce in Hadoop framework 

using Java. 

MapReduce Algorithm 

Generally MapReduce paradigm is based on sending map-reduce programs to 

computers where the actual data resides. 

 During a MapReduce job, Hadoop sends Map and Reduce tasks to 

appropriate servers in the cluster. 

 

 The framework manages all the details of data-passing like issuing tasks, 

verifying task completion, and copying data around the cluster between the 

nodes. 

 

 Most of the computing takes place on the nodes with data on local disks 

that reduces the network traffic. 

 

 After completing a given task, the cluster collects and reduces the data to 

form an appropriate result, and sends it back to the Hadoop server. 

 

Inputs and Outputs (Java Perspective) 

The MapReduce framework operates on key-value pairs, that is, the framework 

views the input to the job as a set of key-value pairs and produces a set of key-

value pair as the output of the job, conceivably of different types. 

The key and value classes have to be serializable by the framework and hence, it 

is required to implement the Writable interface. Additionally, the key classes have 

5. HADOOP IMPLEMENTATION 
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to implement the WritableComparable interface to facilitate sorting by the 

framework. 

Both the input and output format of a MapReduce job are in the form of key-value 

pairs − 

(Input) <k1, v1> -> map -> <k2, v2>-> reduce -> <k3, v3> (Output). 

 Input Output 

Map <k1, v1> list (<k2, v2>) 

Reduce <k2, list(v2)> list (<k3, v3>) 

MapReduce Implementation 

The following table shows the data regarding the electrical consumption of an 

organization. The table includes the monthly electrical consumption and the 

annual average for five consecutive years. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg 

1979 23 23 2 43 24 25 26 26 26 26 25 26 25 

1980 26 27 28 28 28 30 31 31 31 30 30 30 29 

1981 31 32 32 32 33 34 35 36 36 34 34 34 34 

1984 39 38 39 39 39 41 42 43 40 39 38 38 40 

1985 38 39 39 39 39 41 41 41 00 40 39 39 45 

 

We need to write applications to process the input data in the given table to find 

the year of maximum usage, the year of minimum usage, and so on. This task is 

easy for programmers with finite amount of records, as they will simply write the 

logic to produce the required output, and pass the data to the written application. 

Let us now raise the scale of the input data. Assume we have to analyze the 

electrical consumption of all the large-scale industries of a particular state. When 

we write applications to process such bulk data, 
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 They will take a lot of time to execute. 

 

 There will be heavy network traffic when we move data from the source to 

the network server. 

To solve these problems, we have the MapReduce framework. 

Input Data 

The above data is saved as sample.txt and given as input. The input file looks as 

shown below. 

1979 23 23 2 43 24 25 26 26 26 26 25 26 25 

1980 26 27 28 28 28 30 31 31 31 30 30 30 29 

1981 31 32 32 32 33 34 35 36 36 34 34 34 34 

1984 39 38 39 39 39 41 42 43 40 39 38 38 40 

1985 38 39 39 39 39 41 41 41 00 40 39 39 45 

Example Program 

The following program for the sample data uses MapReduce framework. 

package hadoop; 

 

import java.util.*; 

import java.io.IOException; 

import java.io.IOException; 

 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.conf.*; 

import org.apache.hadoop.io.*; 

import org.apache.hadoop.mapred.*; 

import org.apache.hadoop.util.*; 

 

public class ProcessUnits 

{ 

   //Mapper class 

   public static class E_EMapper extends MapReduceBase implements 
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   Mapper<LongWritable,  /*Input key Type */ 

   Text,                   /*Input value Type*/ 

   Text,                   /*Output key Type*/ 

   IntWritable>            /*Output value Type*/ 

   { 

      //Map function 

      public void map(LongWritable key, Text value, 

OutputCollector<Text, IntWritable> output, Reporter reporter) throws 

IOException 

      { 

         String line = value.toString(); 

         String lasttoken = null; 

         StringTokenizer s = new StringTokenizer(line,"\t"); 

         String year = s.nextToken(); 

          

         while(s.hasMoreTokens()){ 

            lasttoken=s.nextToken(); 

         } 

          

         int avgprice = Integer.parseInt(lasttoken); 

         output.collect(new Text(year), new IntWritable(avgprice)); 

      } 

   } 

    

   //Reducer class 

  

   public static class E_EReduce extends MapReduceBase implements 

   Reducer< Text, IntWritable, Text, IntWritable > 

   { 

      //Reduce function 

      public void reduce(Text key, Iterator <IntWritable> values, 

OutputCollector>Text, IntWritable> output, Reporter reporter) throws 

IOException 

      { 

         int maxavg=30; 
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         int val=Integer.MIN_VALUE; 

         while (values.hasNext()) 

         { 

            if((val=values.next().get())>maxavg) 

            { 

               output.collect(key, new IntWritable(val)); 

            } 

         } 

      } 

   } 

  

   //Main function 

  

   public static void main(String args[])throws Exception 

   { 

      JobConf conf = new JobConf(Eleunits.class); 

   

      conf.setJobName("max_eletricityunits"); 

   

      conf.setOutputKeyClass(Text.class); 

      conf.setOutputValueClass(IntWritable.class); 

   

      conf.setMapperClass(E_EMapper.class); 

      conf.setCombinerClass(E_EReduce.class); 

      conf.setReducerClass(E_EReduce.class); 

   

      conf.setInputFormat(TextInputFormat.class); 

      conf.setOutputFormat(TextOutputFormat.class); 

   

      FileInputFormat.setInputPaths(conf, new Path(args[0])); 

      FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

   

      JobClient.runJob(conf); 

   } 
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} 

Save the above program into ProcessUnits.java. The compilation and execution 

of the program is given below. 

Compilation and Execution of ProcessUnits Program 

Let us assume we are in the home directory of Hadoop user (e.g. /home/hadoop). 

Follow the steps given below to compile and execute the above program. 

Step 1 − Use the following command to create a directory to store the compiled 

java classes. 

$ mkdir units 

Step 2 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute 

the MapReduce program. Download the jar from mvnrepository.com. Let us 

assume the download folder is /home/hadoop/. 

Step 3 − The following commands are used to compile the ProcessUnits.java  

program and to create a jar for the program. 

$ javac -classpath hadoop-core-1.2.1.jar -d units ProcessUnits.java 

$ jar -cvf units.jar -C units/ . 

Step 4 − The following command is used to create an input directory in HDFS. 

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir 

Step 5 − The following command is used to copy the input file 

named sample.txt in the input directory of HDFS. 

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt input_dir 

Step 6 − The following command is used to verify the files in the input directory 

$HADOOP_HOME/bin/hadoop fs -ls input_dir/ 

Step 7 − The following command is used to run the Eleunit_max application by 

taking input files from the input directory. 

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir 

output_dir 

Wait for a while till the file gets executed. After execution, the output contains a 

number of input splits, Map tasks, Reducer tasks, etc. 

INFO mapreduce.Job: Job job_1414748220717_0002 

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1
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completed successfully 

14/10/31 06:02:52 

INFO mapreduce.Job: Counters: 49 

 

File System Counters 

    

   FILE: Number of bytes read=61 

   FILE: Number of bytes written=279400 

   FILE: Number of read operations=0 

   FILE: Number of large read operations=0 

   FILE: Number of write operations=0 

 

   HDFS: Number of bytes read=546 

   HDFS: Number of bytes written=40 

   HDFS: Number of read operations=9 

   HDFS: Number of large read operations=0 

   HDFS: Number of write operations=2 Job Counters 

    

   Launched map tasks=2 

   Launched reduce tasks=1 

   Data-local map tasks=2 

  

   Total time spent by all maps in occupied slots (ms)=146137 

   Total time spent by all reduces in occupied slots (ms)=441 

   Total time spent by all map tasks (ms)=14613 

   Total time spent by all reduce tasks (ms)=44120 

  

   Total vcore-seconds taken by all map tasks=146137 

   Total vcore-seconds taken by all reduce tasks=44120 

  

   Total megabyte-seconds taken by all map tasks=149644288 

   Total megabyte-seconds taken by all reduce tasks=45178880 

 

Map-Reduce Framework 
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   Map input records=5 

  

   Map output records=5 

   Map output bytes=45 

   Map output materialized bytes=67 

  

   Input split bytes=208 

   Combine input records=5 

   Combine output records=5 

  

   Reduce input groups=5 

   Reduce shuffle bytes=6 

   Reduce input records=5 

   Reduce output records=5 

  

   Spilled Records=10 

   Shuffled Maps =2 

   Failed Shuffles=0 

   Merged Map outputs=2 

  

   GC time elapsed (ms)=948 

   CPU time spent (ms)=5160 

  

   Physical memory (bytes) snapshot=47749120 

   Virtual memory (bytes) snapshot=2899349504 

  

   Total committed heap usage (bytes)=277684224 

 

File Output Format Counters 

 

   Bytes Written=40 

Step 8 − The following command is used to verify the resultant files in the output 

folder. 

$HADOOP_HOME/bin/hadoop fs -ls output_dir/ 
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Step 9 − The following command is used to see the output in Part-00000 file. 

This file is generated by HDFS. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000 

Following is the output generated by the MapReduce program – 

1981            34 

1984            40 

1985            45 

Step 10 − The following command is used to copy the output folder from HDFS 

to the local file system. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000/bin/hadoop dfs -

get output_dir /home/hadoop 
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A partitioner works like a condition in processing an input dataset. The partition 

phase takes place after the Map phase and before the Reduce phase. 

The number of partitioners is equal to the number of reducers. That means a 

partitioner will divide the data according to the number of reducers. Therefore, 

the data passed from a single partitioner is processed by a single Reducer. 

Partitioner 

A partitioner partitions the key-value pairs of intermediate Map-outputs. It 

partitions the data using a user-defined condition, which works like a hash 

function. The total number of partitions is same as the number of Reducer tasks 

for the job. Let us take an example to understand how the partitioner works. 

MapReduce Partitioner Implementation 

For the sake of convenience, let us assume we have a small table called Employee 

with the following data. We will use this sample data as our input dataset to 

demonstrate how the partitioner works. 

Id Name Age Gender Salary 

1201 gopal 45 Male 50,000 

1202 manisha 40 Female 50,000 

1203 khalil 34 Male 30,000 

1204 prasanth 30 Male 30,000 

1205 kiran 20 Male 40,000 

1206 laxmi 25 Female 35,000 

1207 bhavya 20 Female 15,000 

1208 reshma 19 Female 15,000 

6. PARTITIONER 
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1209 kranthi 22 Male 22,000 

1210 Satish 24 Male 25,000 

1211 Krishna 25 Male 25,000 

1212 Arshad 28 Male 20,000 

1213 lavanya 18 Female 8,000 

 

We have to write an application to process the input dataset to find the highest 

salaried employee by gender in different age groups (for example, below 20, 

between 21 to 30, above 30). 

Input Data 

The above data is saved as input.txt in the “/home/hadoop/hadoopPartitioner” 

directory and given as input. 

1201 gopal 45 Male 50000 

1202 manisha 40 Female 51000 

1203 khaleel 34 Male 30000 

1204 prasanth 30 Male 31000 

1205 kiran 20 Male 40000 

1206 laxmi 25 Female 35000 

1207 bhavya 20 Female 15000 

1208 reshma 19 Female 14000 

1209 kranthi 22 Male 22000 

1210 Satish 24 Male 25000 

1211 Krishna 25 Male 26000 

1212 Arshad 28 Male 20000 

1213 lavanya 18 Female 8000 
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Based on the given input, following is the algorithmic explanation of the program. 

Map Tasks 

The map task accepts the key-value pairs as input while we have the text data in 

a text file. The input for this map task is as follows − 

Input − The key would be a pattern such as “any special key + filename + line 

number” (example: key = @input1) and the value would be the data in that line 

(example: value = 1201 \t gopal \t 45 \t Male \t 50000). 

Method − The operation of this map task is as follows − 

 Read the value (record data), which comes as input value from the 

argument list in a string. 

 

 Using the split function, separate the gender and store in a string variable. 

String[] str = value.toString().split("\t", -3); 

String gender=str[3]; 

 Send the gender information and the record data value as output key-

value pair from the map task to the partition task. 

context.write(new Text(gender), new Text(value)); 

 Repeat all the above steps for all the records in the text file. 

Output − You will get the gender data and the record data value as key-value 

pairs. 

Partitioner Task 

The partitioner task accepts the key-value pairs from the map task as its input. 

Partition implies dividing the data into segments. According to the given 

conditional criteria of partitions, the input key-value paired data can be divided 

into three parts based on the age criteria. 

Input − The whole data in a collection of key-value pairs. 

key = Gender field value in the record. 

value = Whole record data value of that gender. 

Method − The process of partition logic runs as follows. 

 Read the age field value from the input key-value pair. 

String[] str = value.toString().split("\t"); 

int age = Integer.parseInt(str[2]); 
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 Check the age value with the following conditions. 

 Age less than or equal to 20 

 Age Greater than 20 and Less than or equal to 30. 

 Age Greater than 30. 

if(age<=20) 

{ 

   return 0; 

} 

else if(age>20 && age<=30) 

{ 

   return 1 % numReduceTasks; 

} 

else 

{ 

   return 2 % numReduceTasks; 

} 

Output − The whole data of key-value pairs are segmented into three collections 

of key-value pairs. The Reducer works individually on each collection. 

Reduce Tasks 

The number of partitioner tasks is equal to the number of reducer tasks. Here we 

have three partitioner tasks and hence we have three Reducer tasks to be 

executed. 

Input − The Reducer will execute three times with different collection of key-

value pairs. 

key = gender field value in the record. 

value = the whole record data of that gender. 

Method − The following logic will be applied on each collection. 

 Read the Salary field value of each record. 

String [] str = val.toString().split("\t", -3); 

Note: str[4] have the salary field value. 

 Check the salary with the max variable. If str[4] is the max salary, then 

assign str[4] to max, otherwise skip the step. 

if(Integer.parseInt(str[4])>max) 
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{ 

   max=Integer.parseInt(str[4]); 

} 

 Repeat Steps 1 and 2 for each key collection (Male & Female are the key 

collections). After executing these three steps, you will find one max salary 

from the Male key collection and one max salary from the Female key 

collection. 

context.write(new Text(key), new IntWritable(max)); 

Output − Finally, you will get a set of key-value pair data in three collections of 

different age groups. It contains the max salary from the Male collection and the 

max salary from the Female collection in each age group respectively. 

After executing the Map, the Partitioner, and the Reduce tasks, the three 

collections of key-value pair data are stored in three different files as the output. 

All the three tasks are treated as MapReduce jobs. The following requirements and 

specifications of these jobs should be specified in the Configurations − 

 Job name 

 Input and Output formats of keys and values 

 Individual classes for Map, Reduce, and Partitioner tasks 

Configuration conf = getConf(); 

 

//Create Job 

Job job = new Job(conf, "topsal"); 

job.setJarByClass(PartitionerExample.class); 

 

// File Input and Output paths 

FileInputFormat.setInputPaths(job, new Path(arg[0])); 

FileOutputFormat.setOutputPath(job,new Path(arg[1])); 

 

//Set Mapper class and Output format for key-value pair. 

job.setMapperClass(MapClass.class); 

job.setMapOutputKeyClass(Text.class); 

job.setMapOutputValueClass(Text.class); 

 

//set partitioner statement 

job.setPartitionerClass(CaderPartitioner.class); 
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//Set Reducer class and Input/Output format for key-value pair. 

job.setReducerClass(ReduceClass.class); 

 

//Number of Reducer tasks. 

job.setNumReduceTasks(3); 

 

//Input and Output format for data 

job.setInputFormatClass(TextInputFormat.class); 

job.setOutputFormatClass(TextOutputFormat.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(Text.class); 

Example Program 

The following program shows how to implement the partitioners for the given 

criteria in a MapReduce program. 

package partitionerexample; 

 

import java.io.*; 

 

import org.apache.hadoop.io.*; 

import org.apache.hadoop.mapreduce.*; 

import org.apache.hadoop.conf.*; 

import org.apache.hadoop.conf.*; 

import org.apache.hadoop.fs.*; 

 

import org.apache.hadoop.mapreduce.lib.input.*; 

import org.apache.hadoop.mapreduce.lib.output.*; 

 

import org.apache.hadoop.util.*; 

 

public class PartitionerExample extends Configured implements Tool 

{ 

   //Map class 
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   public static class MapClass extends Mapper<LongWritable,Text,Text,Text> 

   { 

      public void map(LongWritable key, Text value, Context context) 

      { 

         try{ 

            String[] str = value.toString().split("\t", -3); 

            String gender=str[3]; 

            context.write(new Text(gender), new Text(value)); 

         } 

         catch(Exception e) 

         { 

            System.out.println(e.getMessage()); 

         } 

      } 

   } 

    

   //Reducer class 

  

   public static class ReduceClass extends Reducer<Text,Text,Text,IntWritable> 

   { 

      public int max = -1; 

      public void reduce(Text key, Iterable <Text> values, Context 

context) throws IOException, InterruptedException 

      { 

         max = -1; 

    

         for (Text val : values) 

         { 

            String [] str = val.toString().split("\t", -3); 

            if(Integer.parseInt(str[4])>max) 

            max=Integer.parseInt(str[4]); 

         } 

    

         context.write(new Text(key), new IntWritable(max)); 
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      } 

   } 

    

   //Partitioner class 

  

   public static class CaderPartitioner extends 

   Partitioner < Text, Text > 

   { 

      @Override 

      public int getPartition(Text key, Text value, int numReduceTasks) 

      { 

         String[] str = value.toString().split("\t"); 

         int age = Integer.parseInt(str[2]); 

          

         if(numReduceTasks == 0) 

         { 

            return 0; 

         } 

          

         if(age<=20) 

         { 

            return 0; 

         } 

         else if(age>20 && age<=30) 

         { 

            return 1 % numReduceTasks; 

         } 

         else 

         { 

            return 2 % numReduceTasks; 

         } 

      } 

   } 

    

   @Override 
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   public int run(String[] arg) throws Exception 

   { 

      Configuration conf = getConf(); 

   

      Job job = new Job(conf, "topsal"); 

      job.setJarByClass(PartitionerExample.class); 

   

      FileInputFormat.setInputPaths(job, new Path(arg[0])); 

      FileOutputFormat.setOutputPath(job,new Path(arg[1])); 

   

      job.setMapperClass(MapClass.class); 

   

      job.setMapOutputKeyClass(Text.class); 

      job.setMapOutputValueClass(Text.class); 

       

      //set partitioner statement 

   

      job.setPartitionerClass(CaderPartitioner.class); 

      job.setReducerClass(ReduceClass.class); 

      job.setNumReduceTasks(3); 

      job.setInputFormatClass(TextInputFormat.class); 

   

      job.setOutputFormatClass(TextOutputFormat.class); 

      job.setOutputKeyClass(Text.class); 

      job.setOutputValueClass(Text.class); 

   

      System.exit(job.waitForCompletion(true)? 0 : 1); 

      return 0; 

   } 

    

   public static void main(String ar[]) throws Exception 

   { 

      int res = ToolRunner.run(new Configuration(), new 

PartitionerExample(),ar); 

      System.exit(0); 
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   } 

} 

Save the above code as PartitionerExample.java in 

“/home/hadoop/hadoopPartitioner”. The compilation and execution of the 

program is given below. 

Compilation and Execution 

Let us assume we are in the home directory of the Hadoop user (for example, 

/home/hadoop). 

Follow the steps given below to compile and execute the above program. 

Step 1 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute 

the MapReduce program. You can download the jar from mvnrepository.com. 

Let us assume the downloaded folder is “/home/hadoop/hadoopPartitioner” 

Step 2 − The following commands are used for compiling the 

programPartitionerExample.java and creating a jar for the program. 

$ javac -classpath hadoop-core-1.2.1.jar -d ProcessUnits.java 

$ jar -cvf PartitionerExample.jar -C . 

Step 3 − Use the following command to create an input directory in HDFS. 

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir 

Step 4 − Use the following command to copy the input file named input.txt in 

the input directory of HDFS. 

$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/hadoopPartitioner/input.txt 

input_dir 

Step 5 − Use the following command to verify the files in the input directory. 

$HADOOP_HOME/bin/hadoop fs -ls input_dir/ 

Step 6 − Use the following command to run the Top salary application by taking 

input files from the input directory. 

$HADOOP_HOME/bin/hadoop jar PartitionerExample.jar 

partitionerexample.PartitionerExample input_dir/input.txt output_dir 

Wait for a while till the file gets executed. After execution, the output contains a 

number of input splits, map tasks, and Reducer tasks. 

15/02/04 15:19:51 INFO mapreduce.Job: Job job_1423027269044_0021 

completed successfully 

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1
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15/02/04 15:19:52 INFO mapreduce.Job: Counters: 49 

 

File System Counters 

 

   FILE: Number of bytes read=467 

   FILE: Number of bytes written=426777 

   FILE: Number of read operations=0 

   FILE: Number of large read operations=0 

   FILE: Number of write operations=0 

  

   HDFS: Number of bytes read=480 

   HDFS: Number of bytes written=72 

   HDFS: Number of read operations=12 

   HDFS: Number of large read operations=0 

   HDFS: Number of write operations=6 

  

Job Counters 

 

   Launched map tasks=1 

   Launched reduce tasks=3 

  

   Data-local map tasks=1 

  

   Total time spent by all maps in occupied slots (ms)=8212 

   Total time spent by all reduces in occupied slots (ms)=59858 

   Total time spent by all map tasks (ms)=8212 

   Total time spent by all reduce tasks (ms)=59858 

  

   Total vcore-seconds taken by all map tasks=8212 

   Total vcore-seconds taken by all reduce tasks=59858 

  

   Total megabyte-seconds taken by all map tasks=8409088 

   Total megabyte-seconds taken by all reduce tasks=61294592 

  

Map-Reduce Framework 
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   Map input records=13 

   Map output records=13 

   Map output bytes=423 

   Map output materialized bytes=467 

  

   Input split bytes=119 

  

   Combine input records=0 

   Combine output records=0 

  

   Reduce input groups=6 

   Reduce shuffle bytes=467 

   Reduce input records=13 

   Reduce output records=6 

  

   Spilled Records=26 

   Shuffled Maps =3 

   Failed Shuffles=0 

   Merged Map outputs=3 

   GC time elapsed (ms)=224 

   CPU time spent (ms)=3690 

  

   Physical memory (bytes) snapshot=553816064 

   Virtual memory (bytes) snapshot=3441266688 

  

   Total committed heap usage (bytes)=334102528 

  

Shuffle Errors 

 

   BAD_ID=0 

   CONNECTION=0 

   IO_ERROR=0 

  

   WRONG_LENGTH=0 
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   WRONG_MAP=0 

   WRONG_REDUCE=0 

  

File Input Format Counters 

 

   Bytes Read=361 

  

File Output Format Counters 

 

   Bytes Written=72 

Step 7 − Use the following command to verify the resultant files in the output 

folder. 

$HADOOP_HOME/bin/hadoop fs -ls output_dir/ 

You will find the output in three files because you are using three partitioners and 

three Reducers in your program. 

Step 8 − Use the following command to see the output in Part-00000 file. This 

file is generated by HDFS. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000 

Output in Part-00000 

Female   15000 

Male     40000 

Use the following command to see the output in Part-00001 file. . 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00001 

Output in Part-00001 

Female   35000 

Male    31000 

Use the following command to see the output in Part-00002 file. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00002 

Output in Part-00002 

Female  51000 
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Male   50000 
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A Combiner, also known as a semi-reducer, is an optional class that operates by 

accepting the inputs from the Map class and thereafter passing the output key-

value pairs to the Reducer class. 

The main function of a Combiner is to summarize the map output records with the 

same key. The output (key-value collection) of the combiner will be sent over the 

network to the actual Reducer task as input. 

Combiner 

The Combiner class is used in between the Map class and the Reduce class to 

reduce the volume of data transfer between Map and Reduce. Usually, the output 

of the map task is large and the data transferred to the reduce task is high. 

The following MapReduce task diagram shows the COMBINER PHASE. 

 

How Combiner Works? 

Here is a brief summary on how MapReduce Combiner works − 

 A combiner does not have a predefined interface and it must implement the 

Reducer interface’s reduce() method. 

 

7. COMBINERS 
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 A combiner operates on each map output key. It must have the same output 

key-value types as the Reducer class. 

 

 A combiner can produce summary information from a large dataset because 

it replaces the original Map output. 

Although, Combiner is optional yet it helps segregating data into multiple groups 

for Reduce phase, which makes it easier to process. 

MapReduce Combiner Implementation 

The following example provides a theoretical idea about combiners. Let us assume 

we have the following input text file named input.txt for MapReduce. 

What do you mean by Object 

What do you know about Java 

What is Java Virtual Machine 

How Java enabled High Performance 

The important phases of the MapReduce program with Combiner are discussed 

below. 

Record Reader 

This is the first phase of MapReduce where the Record Reader reads every line 

from the input text file as text and yields output as key-value pairs. 

Input − Line by line text from the input file. 

Output − Forms the key-value pairs. The following is the set of expected key-

value pairs. 

<1, What do you mean by Object> 

<2, What do you know about Java> 

<3, What is Java Virtual Machine> 

<4, How Java enabled High Performance> 

Map Phase 

The Map phase takes input from the Record Reader, processes it, and produces 

the output as another set of key-value pairs. 

Input − The following key-value pair is the input taken from the Record Reader. 

<1, What do you mean by Object> 

<2, What do you know about Java> 
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<3, What is Java Virtual Machine> 

<4, How Java enabled High Performance> 

The Map phase reads each key-value pair, divides each word from the value using 

StringTokenizer, treats each word as key and the count of that word as value. The 

following code snippet shows the Mapper class and the map function. 

public static class TokenizerMapper extends Mapper<Object, Text, Text, 

IntWritable> 

{ 

   private final static IntWritable one = new IntWritable(1); 

   private Text word = new Text(); 

    

   public void map(Object key, Text value, Context context) throws 

IOException, InterruptedException  

   { 

      StringTokenizer itr = new StringTokenizer(value.toString()); 

      while (itr.hasMoreTokens())  

      { 

         word.set(itr.nextToken()); 

         context.write(word, one); 

      } 

   } 

} 

Output − The expected output is as follows − 

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> 

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1> 

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1> 

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1> 

Combiner Phase 

The Combiner phase takes each key-value pair from the Map phase, processes it, 

and produces the output as key-value collection pairs. 
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Input − The following key-value pair is the input taken from the Map phase. 

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1> 

<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1> 

<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1> 

<How,1> <Java,1> <enabled,1> <High,1> <Performance,1> 

The Combiner phase reads each key-value pair, combines the common words as 

key and values as collection. Usually, the code and operation for a Combiner is 

similar to that of a Reducer. Following is the code snippet for Mapper, Combiner 

and Reducer class declaration. 

job.setMapperClass(TokenizerMapper.class); 

job.setCombinerClass(IntSumReducer.class); 

job.setReducerClass(IntSumReducer.class); 

Output − The expected output is as follows − 

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1> 

<know,1> <about,1> <Java,1,1,1> 

<is,1> <Virtual,1> <Machine,1> 

<How,1> <enabled,1> <High,1> <Performance,1> 

Reducer Phase 

The Reducer phase takes each key-value collection pair from the Combiner phase, 

processes it, and passes the output as key-value pairs. Note that the Combiner 

functionality is same as the Reducer. 

Input − The following key-value pair is the input taken from the Combiner phase. 

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> <Object,1> 

<know,1> <about,1> <Java,1,1,1> 

<is,1> <Virtual,1> <Machine,1> 

<How,1> <enabled,1> <High,1> <Performance,1> 

The Reducer phase reads each key-value pair. Following is the code snippet for 

the Combiner. 

public static class IntSumReducer extends 

Reducer<Text,IntWritable,Text,IntWritable>  

{ 

   private IntWritable result = new IntWritable(); 
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   public void reduce(Text key, Iterable<IntWritable> values,Context 

context) throws IOException, InterruptedException  

   { 

      int sum = 0; 

      for (IntWritable val : values)  

      { 

         sum += val.get(); 

      } 

      result.set(sum); 

      context.write(key, result); 

   } 

} 

Output − The expected output from the Reducer phase is as follows − 

<What,3> <do,2> <you,2> <mean,1> <by,1> <Object,1> 

<know,1> <about,1> <Java,3> 

<is,1> <Virtual,1> <Machine,1> 

<How,1> <enabled,1> <High,1> <Performance,1> 

Record Writer 

This is the last phase of MapReduce where the Record Writer writes every key-

value pair from the Reducer phase and sends the output as text. 

Input − Each key-value pair from the Reducer phase along with the Output 

format. 

Output − It gives you the key-value pairs in text format. Following is the expected 

output. 

What           3 

do             2 

you            2 

mean           1 

by             1 

Object         1 

know           1 

about          1 
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Java           3 

is             1 

Virtual        1 

Machine        1 

How            1 

enabled        1 

High           1 

Performance    1 

Example Program 

The following code block counts the number of words in a program. 

import java.io.IOException; 

import java.util.StringTokenizer; 

 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 

 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

 

public class WordCount { 

   public static class TokenizerMapper extends Mapper<Object, Text, 
Text, IntWritable> 

   { 

      private final static IntWritable one = new IntWritable(1); 

      private Text word = new Text(); 

       

      public void map(Object key, Text value, Context context) throws 
IOException, InterruptedException  
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      { 

         StringTokenizer itr = new StringTokenizer(value.toString()); 

         while (itr.hasMoreTokens())  

         { 

            word.set(itr.nextToken()); 

            context.write(word, one); 

         } 

      } 

   } 

    

   public static class IntSumReducer extends 

Reducer<Text,IntWritable,Text,IntWritable>  

   { 

      private IntWritable result = new IntWritable(); 

      public void reduce(Text key, Iterable<IntWritable> values, Context 

context) throws IOException, InterruptedException  

      { 

         int sum = 0; 

         for (IntWritable val : values)  

         { 

            sum += val.get(); 

         } 

         result.set(sum); 

         context.write(key, result); 

      } 

   } 

    

   public static void main(String[] args) throws Exception  

   { 

      Configuration conf = new Configuration(); 

      Job job = Job.getInstance(conf, "word count"); 

   

      job.setJarByClass(WordCount.class); 

      job.setMapperClass(TokenizerMapper.class); 

      job.setCombinerClass(IntSumReducer.class); 
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      job.setReducerClass(IntSumReducer.class); 

   

      job.setOutputKeyClass(Text.class); 

      job.setOutputValueClass(IntWritable.class); 

   

      FileInputFormat.addInputPath(job, new Path(args[0])); 

      FileOutputFormat.setOutputPath(job, new Path(args[1])); 

   

      System.exit(job.waitForCompletion(true) ? 0 : 1); 

   } 

} 

Save the above program as WordCount.java. The compilation and execution of 

the program is given below. 

Compilation and Execution 

Let us assume we are in the home directory of Hadoop user (for example, 

/home/hadoop). 

Follow the steps given below to compile and execute the above program. 

Step 1 − Use the following command to create a directory to store the compiled 

java classes. 

$ mkdir units 

Step 2 − Download Hadoop-core-1.2.1.jar, which is used to compile and execute 

the MapReduce program. You can download the jar from mvnrepository.com. 

Let us assume the downloaded folder is /home/hadoop/. 

Step 3 − Use the following commands to compile the WordCount.java program 

and to create a jar for the program. 

$ javac -classpath hadoop-core-1.2.1.jar -d units WordCount.java 

$ jar -cvf units.jar -C units/ . 

Step 4 − Use the following command to create an input directory in HDFS. 

$HADOOP_HOME/bin/hadoop fs -mkdir input_dir 

Step 5 − Use the following command to copy the input file named input.txt in 

the input directory of HDFS. 

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1
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$HADOOP_HOME/bin/hadoop fs -put /home/hadoop/input.txt input_dir 

Step 6 − Use the following command to verify the files in the input directory. 

$HADOOP_HOME/bin/hadoop fs -ls input_dir/ 

Step 7 − Use the following command to run the Word count application by taking 

input files from the input directory. 

$HADOOP_HOME/bin/hadoop jar units.jar hadoop.ProcessUnits input_dir 

output_dir 

Wait for a while till the file gets executed. After execution, the output contains a 

number of input splits, Map tasks, and Reducer tasks. 

Step 8 − Use the following command to verify the resultant files in the output 

folder. 

$HADOOP_HOME/bin/hadoop fs -ls output_dir/ 

Step 9 − Use the following command to see the output in Part-00000 file. This 

file is generated by HDFS. 

$HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000 

Following is the output generated by the MapReduce program. 

What           3 

do             2 

you            2 

mean           1 

by             1 

Object         1 

know           1 

about          1 

Java           3 

is             1 

Virtual        1 

Machine        1 

How            1 

enabled        1 

High           1 

Performance    1 
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This chapter explains Hadoop administration which includes both HDFS and 

MapReduce administration. 

 HDFS administration includes monitoring the HDFS file structure, locations, 

and the updated files. 

 

 MapReduce administration includes monitoring the list of applications, 

configuration of nodes, application status, etc. 

HDFS Monitoring 

HDFS (Hadoop Distributed File System) contains the user directories, input files, 

and output files. Use the MapReduce commands, put and get, for storing and 

retrieving. 

After starting the Hadoop framework (daemons) by passing the command “start-

all.sh” on “/$HADOOP_HOME/sbin”, pass the following URL to the browser 

“http://localhost:50070”. You should see the following screen on your browser. 

The following screenshot shows how to browse the browse HDFS. 

 

8. HADOOP ADMINISTRATION 
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The following screenshot show the file structure of HDFS. It shows the files in the 

“/user/hadoop” directory. 

 
 

The following screenshot shows the Datanode information in a cluster. Here you 

can find one node with its configurations and capacities. 
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MapReduce Job Monitoring 

A MapReduce application is a collection of jobs (Map job, Combiner, Partitioner, 

and Reduce job). It is mandatory to monitor and maintain the following − 

 Configuration of datanode where the application is suitable. 

 

 The number of datanodes and resources used per application. 

To monitor all these things, it is imperative that we should have a user interface. 

After starting the Hadoop framework by passing the command “start-all.sh” on 

“/$HADOOP_HOME/sbin”, pass the following URL to the browser 

“http://localhost:8080”. You should see the following screen on your browser. 

 



  MapReduce 

   59 

In the above screenshot, the hand pointer is on the application ID. Just click on it 

to find the following screen on your browser. It describes the following − 

 On which user the current application is running 

 

 The application name 

 

 Type of that application 

 

 Current status, Final status 

 

 Application started time, elapsed (completed time), if it is complete at the 

time of monitoring 

 

 The history of this application, i.e., log information 

 

 And finally, the node information, i.e., the nodes that participated in running 

the application. 

The following screenshot shows the details of a particular application − 
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The following screenshot describes the currently running nodes information. Here, 

the screenshot contains only one node. A hand pointer shows the localhost address 

of the running node. 

 


