HDFS Tutorial: Read & Write Commands using
Java API

By Execute Java Online, www.guru99.com
January 14th, 2017

Hadoop comes with a distributed file system called HDFS (HADOOP Distributed File
Systems) HADOOP based applications make use of HDFS. HDFS is designed for storing
very large data files, running on clusters of commodity hardware. It is fault tolerant,

scalable, and extremely simple to expand.

Do you know? When data exceeds the capacity of storage on a single physical machine, it
becomes essential to divide it across number of separate machines. File system that
manages storage specific operations across a network of machines is called as

distributed file system.
In this tutorial we will learn,

HDEFS cluster primarily consists of a NameNode that manages the file system Metadata
and a DataNodes that stores the actual data.

« NameNode: NameNode can be considered as a master of the system. It maintains
the file system tree and the metadata for all the files and directories present in the
system. Two files 'Namespace image' and the 'edit log' are used to store metadata
information. Namenode has knowledge of all the datanodes containing data blocks
for a given file, however, it does not store block locations persistently. This

information is reconstructed every time from datanodes when the system starts.

« DataNode : DataNodes are slaves which reside on each machine in a cluster and
provide the actual storage. It is responsible for serving, read and write requests for

the clients.

Read/write operations in HDFS operate at a block level. Data files in HDFS are broken
into block-sized chunks, which are stored as independent units. Default block-size is 64
MB.

https://getpocket.com/redirect?url=http%3A%2F%2Fwww.guru99.com%2Flearn-hdfs-a-beginners-guide.html&formCheck=65c9a658c92a789fedab1eaf723e33ec

HDEFS operates on a concept of data replication wherein multiple replicas of data blocks
are created and are distributed on nodes throughout a cluster to enable high availability

of data in the event of node failure.

Do you know? A file in HDFS, which is smaller than a single block, does not occupy a
block's full storage.

Read Operation In HDFS

Data read request is served by HDFS, NameNode and DataNode. Let's call reader as a

‘client'. Below diagram depicts file read operation in Hadoop.

-

\\l.,' 2 }MEtadata Request
to get block location

p
Distributed } _
File System J - Namenode
\ .‘... A idabiiEabnaabnEaRBEd
o
dg 3 IMetadata Flow
m [Q
C
lose FSDataln putStreamJ
L
_ T
(5)Read : . 6 JRead
‘Data Flow .
4
DataMode DataMode DataMode

(@ guru99.com

1. Client initiates read request by calling 'open()' method of FileSystem object; it is an

object of type DistributedFileSystem.

2. This object connects to namenode using RPC and gets metadata information such
as the locations of the blocks of the file. Please note that these addresses are of first
few block of file.

3. In response to this metadata request, addresses of the DataNodes having copy of
that block, is returned back.

5. Data is read in the form of streams wherein client invokes 'read()' method

repeatedly. This process of read() operation continues till it reaches end of block.

6. Once end of block is reached, DFSInputStream closes the connection and moves on
to locate the next DataNode for the next block

7. Once client has done with the reading, it calls close() method.

Write Operation In HDFS

In this section, we will understand how data is written into HDFS through files.

s \ 9 Create
Distributed \
File System \| TR

A
@ Complete 4
' -
’ ,1[DFSOutputStream] e i
- ’E: - - ’ ’
" - - : 9 6 L - - -
g Ack Queue . | Data Quewe 4’[Dtta$trumerD
© seocing : @) Writing Packet
acknowledgement packet N
¥ @ @
DataNode DataMode DataMode
(@ guru99.com @DﬂtaNodas Pipeline

1. Client initiates write operation by calling 'create()' method of DistributedFileSystem

object which creates a new file - Step no. 1 in above diagram.

2. DistributedFileSystem object connects to the NameNode using RPC call and
initiates new file creation. However, this file create operation does not associate any
blocks with the file. It is the responsibility of NameNode to verify that the file
(which is being created) does not exist already and client has correct permissions to
create new file. If file already exists or client does not have sufficient permission to
create a new file, then IOException is thrown to client. Otherwise, operation

succeeds and a new record for the file is created by the NameNode.

3. Once new record in NameNode is created, an object of type FSDataOutputStream is
returned to the client. Client uses it to write data into the HDFS. Data write method

is invoked (step 3 in diagram).

4. FSDataOutputStream contains DFSOutputStream object which looks after
communication with DataNodes and NameNode. While client continues writing
data, DFSOutputStream continues creating packets with this data. These packets

are en-queued into a queue which is called as DataQueue.

5. There is one more component called DataStreamer which consumes this
DataQueue. DataStreamer also asks NameNode for allocation of new blocks

thereby picking desirable DataNodes to be used for replication.

6. Now, the process of replication starts by creating a pipeline using DataNodes. In
our case, we have chosen replication level of 3 and hence there are 3 DataNodes in

the pipeline.
7. The DataStreamer pours packets into the first DataNode in the pipeline.

8. Every DataNode in a pipeline stores packet received by it and forwards the same to

the second DataNode in pipeline.

9. Another queue, 'Ack Queue' is maintained by DFESOutputStream to store packets

which are waiting for acknowledgement from DataNodes.

10. Once acknowledgement for a packet in queue is received from all DataNodes in the
pipeline, it is removed from the 'Ack Queue'. In the event of any DataNode failure,

packets from this queue are used to reinitiate the operation.

11. After client is done with the writing data, it calls close() method (Step 9 in the
diagram) Call to close(), results into flushing remaining data packets to the pipeline

followed by waiting for acknowledgement.

12. Once final acknowledgement is received, NameNode is contacted to tell it that the

file write operation is complete.

Access HDEFS using JAVA API

In this section, we try to understand Java interface used for accessing Hadoop's file

system.

In order to interact with Hadoop's filesytem programmatically, Hadoop provides
multiple JAVA classes. Package named org.apache.hadoop.fs contains classes useful in

manipulation of a file in Hadoop's filesystem. These operations include, open, read,

http://www.guru99.com/java-tutorial.html

write, and close. Actually, file API for Hadoop is generic and can be extended to interact
with other filesystems other than HDEFS.

Reading a file from HDFS, programmatically

Object java.net.URL is used for reading contents of a file. To begin with, we need to
make Java recognize Hadoop's hdfs URL scheme. This is done by calling
setURLStreamHandlerFactory method on URL object and an instance of
FsUrlStreamHandlerFactory is passed to it. This method needs to be executed only once
per JVM, hence it is enclosed in a static block.

An example code is-

public class URLCat {
static {
URL.setURLStreamHandlerFactory(new
FsUrlStreamHandlerFactory());
}
public static void main(String[] args) throws Exception {
InputStream in = null;
try {
in = new URL(args[@]).openStream();
IOUtils.copyBytes(in, System.out, 4096, false);
} finally {
IOUtils.closeStream(in);

This code opens and reads contents of a file. Path of this file on HDEFS is passed to the
program as a commandline argument.

Access HDFS Using COMMAND-LINE INTERFACE

This is one of the simplest way to interact with HDFS. Command-line interface has
support for filesystem operations like read file, create directories, moving files, deleting

data, and listing directories.

We can run '$HADOOP_HOME/bin/hdfs dfs -help' to get detailed help on every
command. Here, 'dfs’ is a shell command of HDFS which supports multiple

subcommands.

Some of the widely used commands are listed below along with some details of each

one.
1. Copy a file from local filesystem to HDFS

$HADOOP_HOME/bin/hdfs dfs -copyFromLocal temp.txt /

F o

hduser@prafulla: ~

hduser@prafulla:~S5 SHADOOP_HOME/bin/hdfs dfs -copyFromLocal temp.txt /

This command copies file temp.txt from local filesystem to HDFS.

2. We can list files present in a directory using -lIs

$HADOOP_HOME/bin/hdfs dfs -Is /

hduser@prafulla: ~

hduser@prafulla:~S SHADOOP_HOME/binfhdfs dfs -1s /

14/85/18 19:44:87 WARN util.NativeCodeloader: Unable to load native-hadoop libra
ry for your platfoerm... using builtin-java classes where applicable

Found 1 items

-FW-r--r-- 1 hduser supergroup B 2014-85-18 19:39 ftemp.txt
hdusergprafulla:~$ |}

We can see a file 'temp.txt' (copied earlier) being listed under ' /' directory.
3. Command to copy a file to local filesystem from HDFS

$HADOOP_HOME/bin/hdfs dfs -copyToLocal /temp.txt

"

hduser@prafulla: ~ftempDir

hduserg@gprafulla:~/tempDir$ SHADOOP_HOME/bin/hdfs dfs -copyToLocal ftemp.txt
14/05/18 19:57:85 WARN util.NativeCodelLoader: Unable to load native-hadoop libra

ry for your platform... using builtin-java classes where applicable
hduser@prafulla:~/tempDirs 1s

temp.txt

hdusergprafulla:~/tempDirs

We can see temp.txt copied to local filesystem.

4. Command to create new directory

$HADOOP_HOME/bin/hdfs dfs -mkdir /mydirectory

hduser@prafulla: ~/tempDir

hduserg@prafulla:~/tempDir$ SHADOOP_HOME/bin/hdfs dfs -mkdir /mydirectory

Check whether directory is created or not. Now, you should know how to do it ;-)

