Hadoop HDFS JAVA API

By Nitin, tutorials.techmytalk.com
August 16th, 2014

Hadoop’s org.apache.hadoop.fs.FileSystem is generic class to access and manage HDFS
files/directories located in distributed environment. File’s content stored inside datanode
with multiple equal large sizes of blocks (e.g. 64 MB), and namenode keep the
information of those blocks and Meta information. FileSystem read and stream by
accessing blocks in sequence order. FileSystem first get blocks information from
NameNode then open, read and close one by one. It opens first blocks once it complete
then close and open next block. HDES replicate the block to give higher reliability and
scalability and if client is one of the datanode then it tries to access block locally if fail
then move to other cluster datanode.

FileSystem uses FSDataOutputStream and FSDatalnputStream to write and read the
contents in stream. Hadoop has provided various implementation of FileSystem as

described below:

DistributedFileSystem: To access HDFS File in distributed environment

LocalFileSystem: To access HDFS file in Local system

FTPFileSystem: To access HDFS file FTP client

WebHdfsFileSystem: To access HDFS file over the web

URI and Path:
Hadoop’s URI locate file location in HDFS. It uses hdfs://host: port/location to access file
through FileSystem.

Below code show how to create URI

hdfs://localhost:9000/user/joe/TestFile.txt
URI uri=URI.create (“hdfs://host: port/path”);

Host and post on above uri could be configured in conf/core-site.xml file as below

<property><name>fs.default.name</name>
<value>hdfs://localhost:9000</value></property>

https://getpocket.com/redirect?url=https%3A%2F%2Ftutorials.techmytalk.com%2F2014%2F08%2F16%2Fhadoop-hdfs-java-api%2F&formCheck=65c9a658c92a789fedab1eaf723e33ec

Please refer Hadoop Setup link to for more detail on Hadoop Setup.
Path consist URI and resolve the OS dependency in URI e.g. Windows uses \\path
whereas linux uses //. It also uses to resolve parent child dependency.

It could be created as below

Path path=new Path (uri); //It constitute URI

Configuration

Configuration class passes the Hadoop configuration information to FileSystem. It loads
the core-site and core-default.xml through class loader and keeps Hadoop configuration
information such as fs.defaultFS, fs.default.name etc. You can create the Configuration

class as below

Configuration conf = new Configuration ();

You can also set the configuration parameter explicitly as below

conf.set("fs.default.name", “hdfs://localhost:9000”);

FileSystem

Below code describe how to create Hadoop’s FileSystem

public static FileSystem get(Configuration conf)

public static FileSystem get(URI uri, Configuration conf)
public static FileSystem get(URI uri, Configuration conf,
String user)

FileSystem uses NameNode to locate the DataNode and then directly access DataNodes
block in sequence order to read the file. FileSystem uses Java IO FileSystem interface
mainly DatalnputStream and DataOutputStream for IO operation.

If you are looking to get local filesystem we can directly use getLocal method as

mentioned below

public static LocalFileSystem getlLocal(Configuration conf)

https://tutorials.techmytalk.com/2014/07/21/apache-hadoop-setup/

FSDatalnputStream

FSDatalnputStream wraps the DatalnputStream and implements Seekable,
PositionedReadable interfaces which provide method like getPos(), seek() method to
provide Random Access on HDFS file.

FileSystem have open() method which return FSDatalnputStream as below:

URI uri = URI.create (“hdfs://host: port/file path”);
Configuration conf = new Configuration ();

FileSystem file = FileSystem.get (uri, conf);
FSDataInputStream in = file.open(new Path(uri));

Above method get FSDatalnputStream with default buffer size 4096 byte i.e. 4KB. We
can also define the buffer size while creating Input Stream as below code.
public abstract FSDataInputStream open(Path path, int sizeBuffer)

FSDaralnputStream implements seek (long pos) and getPos () method of Seekable
interface.

public interface Seekable {
void seek(long pos) throws IOException;
long getPos() throws IOException;
boolean seekToNewSource(long targetPos) throws IOException;

}

seek() method seek the file to the given offset from the start of the file so that read () will
stream from that location whereas getPos() method will return the current position on
the InputStream.

Below sample code uses seek (), getPos () and read() method

FileSystem file = FileSystem.get (uri, conf);
FSDataInputStream in = file.open(new Path(uri));
byte[] btbuffer = new byte[5];
in.seek(5); // sent to 5th position
Assert.assertEquals(5, in.getPos());
in.read(btbuffer, 0, 5);//read 5 byte in byte array

from offset ©
System.out.println(new String(btbuffer));//

&amp;amp;quot; print 5 character from 5th position

in.read(10,btbuffer, 0, 5);// print 5 character staring
from 10th position

FSDatalnputStream also implements PositionedReadable, which provide read, &
readFully method to read part of file content from seek position as mentioned below

read(long position, byte[] buffer, int offset, int length)

FSDataOutputStream

Filesystem’s create () method return FSDataOutputStream, which use to create new
HDFS file or write the content at the EOF. It doesn’t provide seek because of HDFS
limitation to write to content at the EOF only. It wrap Java I0’s DataOutputStream and
add method such as getPos() to get the position of the file and write() to write the

content at the last position.

Below method signature provide FSDataOutputStream:

Create method on FileSystem create file e.g.

public FSDataOutputStream create(Path f) create empty file.
public FSDataOutputStream append(Path f) will append existing
file

Create method also pass Progressable interface to track the status during file creation.

public FSDataOutputStream create(Path f, Progressable
progress)

FileStatus
As describe below code getStatus() method of FileSystem provide HDES file’s meta
information of HDEFS file

URI uri=URI.create(strURI);
FileSystem fileSystem=FileSystem.get(uri,conf);
FileStatus fileStatus=fileSystem.getFileStatus(new
Path(uri));

System.out.println("AccessTime:"+fileStatus.getAccessTime());

System.out.println("AccessTime:"+fileStatus.getLen());

System.out.println("AccessTime:"+fileStatus.getModificationTi

me());

System.out.println("AccessTime:"+fileStatus.getPath());

If your uri is directory not file then listStatus() will give you array of FileStatus[] as below

public FileStatus[] listStatus(Path f)

Directories

FileSystem provide method public boolean mkdirs (Path f) to create directory and its
entire necessary child directory if not available. It returns true if directory created
successfully. This is not mandatory as whenever you create file it will try to create

necessary sub directories.

Delete file
Delete method on FileSystem remove the file/directory permanently
public boolean delete(Path f, boolean recursive) throws IOException

If recursive is true then it will delete a non-empty directory

Download link
Please use download link to download source code.

Summary

In this article I tried to explain basic HDFS JAVA API. JAVA HDFS API use to access
HDEFS file through Java program

Reference

Hadoop Essence: The Beginner’s Guide to Hadoop & Hive.

http://www.amazon.com/Hadoop-Essence-Nitin-Kumar-ebook/dp/B00OPTJBHK?&tag=rnwap-20

