
Apache Hive

i

Apache Hive

 i

About the Tutorial

Hive is a data warehouse infrastructure tool to process structured data in Hadoop.

It resides on top of Hadoop to summarize Big Data, and makes querying and

analyzing easy.

This is a brief tutorial that provides an introduction on how to use Apache Hive

HiveQL with Hadoop Distributed File System. This tutorial can be your first step

towards becoming a successful Hadoop Developer with Hive.

Audience

This tutorial is prepared for professionals aspiring to make a career in Big Data

Analytics using Hadoop Framework. ETL developers and professionals who are into

analytics in general may as well use this tutorial to good effect.

Prerequisites

Before proceeding with this tutorial, you need a basic knowledge of Core Java,

Database concepts of SQL, Hadoop File system, and any of Linux operating system

flavors.

Disclaimer & Copyright

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher. We strive to update the contents

of our website and tutorials as timely and as precisely as possible, however, the

contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides

no guarantee regarding the accuracy, timeliness or completeness of our website

or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Apache Hive

 ii

Table of Contents

About the Tutorial ··· i

Audience ··· i

Prerequisites ··· i

Disclaimer & Copyright ·· i

Table of Contents ··· ii

1. INTRODUCTION ·· 1

Hadoop ·· 1

What is Hive? ··· 2

Features of Hive ··· 2

Architecture of Hive ··· 2

Working of Hive ··· 4

2. HIVE INSTALLATION ·· 6

Step 1: Verifying JAVA Installation ··· 6

Step 2: Verifying Hadoop Installation ··· 8

Step 3: Downloading Hive ·· 15

Step 4: Installing Hive ··· 15

Step 5: Configuring Hive ··· 16

Step 6: Downloading and Installing Apache Derby ··· 17

Step 7: Configuring Metastore of Hive ·· 19

Step 8: Verifying Hive Installation ·· 20

3. HIVE DATA TYPES ·· 22

Column Types ··· 22

Literals ··· 24

Null Value ··· 24

Complex Types ··· 24

Apache Hive

 iii

4. CREATE DATABASE ··· 25

Create Database Statement ··· 25

5. DROP DATABASE ·· 28

Drop Database Statement ·· 28

6. CREATE TABLE ·· 30

Create Table Statement ·· 30

Load Data Statement ·· 33

7. ALTER TABLE ··· 36

Alter Table Statement ·· 36

Rename To… Statement ··· 36

Change Statement ·· 38

Add Columns Statement ··· 40

Replace Statement ··· 41

8. DROP TABLE ··· 44

Drop Table Statement ·· 44

9. PARTITIONING ·· 47

Adding a Partition ·· 48

Renaming a Partition ·· 48

Dropping a Partition ··· 48

10. BUILT-IN OPERATORS ··· 50

Relational Operators ·· 50

Arithmetic Operators ··· 52

Logical Operators ··· 53

Complex Operators ·· 54

11. BUILT-IN FUNCTIONS ·· 55

Apache Hive

 iv

Built-In Functions ··· 55

Aggregate Functions ··· 57

12. VIEWS AND INDEXES ·· 59

Creating a View ·· 59

Example ··· 59

Dropping a View ··· 60

Creating an Index ··· 60

Example ··· 61

Dropping an Index ·· 61

13. HIVEQL SELECT…WHERE ··· 62

Syntax ·· 62

Example ··· 62

14. HIVEQL SELECT…ORDER BY ··· 66

Syntax ·· 66

Example ··· 66

15. HIVEQL GROUP BY ·· 70

Syntax ·· 70

Example ··· 70

16. HIVEQL JOINS ··· 74

Syntax ·· 74

Example ··· 74

JOIN ··· 75

LEFT OUTER JOIN ·· 76

RIGHT OUTER JOIN ··· 76

FULL OUTER JOIN ··· 77

Apache Hive

 1

The term ‘Big Data’ is used for collections of large datasets that include huge

volume, high velocity, and a variety of data that is increasing day by day. Using

traditional data management systems, it is difficult to process Big Data. Therefore,

the Apache Software Foundation introduced a framework called Hadoop to solve

Big Data management and processing challenges.

Hadoop

Hadoop is an open-source framework to store and process Big Data in a distributed

environment. It contains two modules, one is MapReduce and another is Hadoop

Distributed File System (HDFS).

 MapReduce: It is a parallel programming model for processing large
amounts of structured, semi-structured, and unstructured data on large
clusters of commodity hardware.

 HDFS: Hadoop Distributed File System is a part of Hadoop framework, used

to store and process the datasets. It provides a fault-tolerant file system to
run on commodity hardware.

The Hadoop ecosystem contains different sub-projects (tools) such as Sqoop, Pig,

and Hive that are used to help Hadoop modules.

 Sqoop: It is used to import and export data to and fro between HDFS and

RDBMS.

 Pig: It is a procedural language platform used to develop a script for

MapReduce operations.

 Hive: It is a platform used to develop SQL type scripts to do MapReduce

operations.

Note: There are various ways to execute MapReduce operations:

 The traditional approach using Java MapReduce program for structured,
semi-structured, and unstructured data.

 The scripting approach for MapReduce to process structured and semi
structured data using Pig.

 The Hive Query Language (HiveQL or HQL) for MapReduce to process

structured data using Hive.

1. INTRODUCTION

Apache Hive

 2

What is Hive?

Hive is a data warehouse infrastructure tool to process structured data in Hadoop.

It resides on top of Hadoop to summarize Big Data, and makes querying and

analyzing easy.

Initially Hive was developed by Facebook, later the Apache Software Foundation

took it up and developed it further as an open source under the name Apache

Hive. It is used by different companies. For example, Amazon uses it in Amazon

Elastic MapReduce.

Hive is not

 A relational database

 A design for OnLine Transaction Processing (OLTP)

 A language for real-time queries and row-level updates

Features of Hive

Here are the features of Hive:

 It stores schema in a database and processed data into HDFS.

 It is designed for OLAP.

 It provides SQL type language for querying called HiveQL or HQL.

 It is familiar, fast, scalable, and extensible.

Architecture of Hive

The following component diagram depicts the architecture of Hive:

Apache Hive

 3

This component diagram contains different units. The following table describes

each unit:

Unit Name Operation

User Interface Hive is a data warehouse infrastructure software that can
create interaction between user and HDFS. The user

interfaces that Hive supports are Hive Web UI, Hive
command line, and Hive HD Insight (In Windows server).

Meta Store Hive chooses respective database servers to store the

schema or Metadata of tables, databases, columns in a

table, their data types, and HDFS mapping.

HiveQL Process
Engine

HiveQL is similar to SQL for querying on schema info on the

Metastore. It is one of the replacements of traditional

approach for MapReduce program. Instead of writing

MapReduce program in Java, we can write a query for

MapReduce job and process it.

Execution

Engine

The conjunction part of HiveQL process Engine and

MapReduce is Hive Execution Engine. Execution engine

processes the query and generates results as same as

MapReduce results. It uses the flavor of MapReduce.

HDFS or HBASE Hadoop distributed file system or HBASE are the data

storage techniques to store data into file system.

Apache Hive

 4

Working of Hive

The following diagram depicts the workflow between Hive and Hadoop.

The following table defines how Hive interacts with Hadoop framework:

Step No. Operation

1 Execute Query

The Hive interface such as Command Line or Web UI sends query to

Driver (any database driver such as JDBC, ODBC, etc.) to execute.

2 Get Plan

The driver takes the help of query compiler that parses the query to

check the syntax and query plan or the requirement of query.

3 Get Metadata

The compiler sends metadata request to Metastore (any database).

4 Send Metadata

Metastore sends metadata as a response to the compiler.

Apache Hive

 5

5 Send Plan

The compiler checks the requirement and resends the plan to the

driver. Up to here, the parsing and compiling of a query is complete.

6 Execute Plan

The driver sends the execute plan to the execution engine.

7 Execute Job

Internally, the process of execution job is a MapReduce job. The

execution engine sends the job to JobTracker, which is in Name node

and it assigns this job to TaskTracker, which is in Data node. Here,

the query executes MapReduce job.

7.1 Metadata Ops

Meanwhile in execution, the execution engine can execute metadata

operations with Metastore.

8 Fetch Result

The execution engine receives the results from Data nodes.

9 Send Results

The execution engine sends those resultant values to the driver.

10 Send Results

The driver sends the results to Hive Interfaces.

Apache Hive

 6

All Hadoop sub-projects such as Hive, Pig, and HBase support Linux operating

system. Therefore, you need to install any Linux flavored OS. The following simple

steps are executed for Hive installation:

Step 1: Verifying JAVA Installation

Java must be installed on your system before installing Hive. Let us verify java

installation using the following command:

$ java –version

If Java is already installed on your system, you get to see the following response:

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

If java is not installed in your system, then follow the steps given below for

installing java.

Installing Java

Step I:

Download java (JDK <latest version> - X64.tar.gz) by visiting the following link

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-

1880260.html.

Then jdk-7u71-linux-x64.tar.gz will be downloaded onto your system.

Step II:

Generally you will find the downloaded java file in the Downloads folder. Verify it

and extract the jdk-7u71-linux-x64.gz file using the following commands.

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

2. HIVE INSTALLATION

Apache Hive

 7

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

Step III:

To make java available to all the users, you have to move it to the location

“/usr/local/”. Open root, and type the following commands.

$ su

password:

mv jdk1.7.0_71 /usr/local/

exit

Step IV:

For setting up PATH and JAVA_HOME variables, add the following commands to

~/.bashrc file.

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH=PATH:$JAVA_HOME/bin

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step V:

Use the following commands to configure java alternatives:

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

Apache Hive

 8

alternatives --set jar usr/local/java/bin/jar

Now verify the installation using the command java -version from the terminal

as explained above.

Step 2: Verifying Hadoop Installation

Hadoop must be installed on your system before installing Hive. Let us verify the

Hadoop installation using the following command:

$ hadoop version

If Hadoop is already installed on your system, then you will get the following

response:

Hadoop 2.4.1
Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768
Compiled by hortonmu on 2013-10-07T06:28Z
Compiled with protoc 2.5.0
From source with checksum 79e53ce7994d1628b240f09af91e1af4

If Hadoop is not installed on your system, then proceed with the following steps:

Downloading Hadoop

Download and extract Hadoop 2.4.1 from Apache Software Foundation using the

following commands.

$ su

password:

cd /usr/local

wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/

hadoop-2.4.1.tar.gz

tar xzf hadoop-2.4.1.tar.gz

Apache Hive

 9

mv hadoop-2.4.1/* to hadoop/

exit

Installing Hadoop in Pseudo Distributed Mode

The following steps are used to install Hadoop 2.4.1 in pseudo distributed mode.

Step I: Setting up Hadoop

You can set Hadoop environment variables by appending the following commands

to ~/.bashrc file.

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step II: Hadoop Configuration

You can find all the Hadoop configuration files in the location

“$HADOOP_HOME/etc/hadoop”. You need to make suitable changes in those

configuration files according to your Hadoop infrastructure.

$ cd $HADOOP_HOME/etc/hadoop

In order to develop Hadoop programs using java, you have to reset the java

environment variables in hadoop-env.sh file by replacing JAVA_HOME value

with the location of java in your system.

export JAVA_HOME=/usr/local/jdk1.7.0_71

Given below are the list of files that you have to edit to configure Hadoop.

core-site.xml

Apache Hive

 10

The core-site.xml file contains information such as the port number used for

Hadoop instance, memory allocated for the file system, memory limit for storing

the data, and the size of Read/Write buffers.

Open the core-site.xml and add the following properties in between the

<configuration> and </configuration> tags.

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

 </property>

</configuration>

hdfs-site.xml

The hdfs-site.xml file contains information such as the value of replication data,

the namenode path, and the datanode path of your local file systems. It means

the place where you want to store the Hadoop infra.

Let us assume the following data.

dfs.replication (data replication value) = 1

(In the following path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file
system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

Apache Hive

 11

Open this file and add the following properties in between the <configuration>,

</configuration> tags in this file.

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.name.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.data.dir</name>

 <value>file:///home/hadoop/hadoopinfra/hdfs/datanode</value>

 </property>

</configuration>

Note: In the above file, all the property values are user-defined and you can make

changes according to your Hadoop infrastructure.

yarn-site.xml

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add

the following properties in between the <configuration>, </configuration> tags in

this file.

<configuration>

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

 </property>

</configuration>

Apache Hive

 12

mapred-site.xml

This file is used to specify which MapReduce framework we are using. By default,

Hadoop contains a template of yarn-site.xml. First of all, you need to copy the file

from mapred-site,xml.template to mapred-site.xml file using the following

command.

$ cp mapred-site.xml.template mapred-site.xml

Open mapred-site.xml file and add the following properties in between the

<configuration>, </configuration> tags in this file.

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

Verifying Hadoop Installation

The following steps are used to verify the Hadoop installation.

Step I: Name Node Setup

Set up the namenode using the command “hdfs namenode -format” as follows.

$ cd ~

$ hdfs namenode -format

The expected result is as follows.

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:

/**

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = localhost/192.168.1.11

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 2.4.1

...

...

Apache Hive

 13

10/24/14 21:30:56 INFO common.Storage: Storage directory

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to

retain 1 images with txid >= 0

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11

**/

Step II: Verifying Hadoop dfs

The following command is used to start dfs. Executing this command will start

your Hadoop file system.

$ start-dfs.sh

The expected output is as follows:

10/24/14 21:37:56

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-namenode-localhost.out

localhost: starting datanode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

Step III: Verifying Yarn Script

The following command is used to start the yarn script. Executing this command

will start your yarn daemons.

$ start-yarn.sh

The expected output is as follows:

Apache Hive

 14

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out

localhost: starting nodemanager, logging to /home/hadoop/hadoop-

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

Step IV: Accessing Hadoop on Browser

The default port number to access Hadoop is 50070. Use the following url to get

Hadoop services on your browser.

http://localhost:50070/

Step V: Verify all applications for cluster

The default port number to access all applications of cluster is 8088. Use the

following url to visit this service.

http://localhost:8088/

Apache Hive

 15

Step 3: Downloading Hive

We use hive-0.14.0 in this tutorial. You can download it by visiting the following

link http://apache.petsads.us/hive/hive-0.14.0/. Let us assume it gets

downloaded onto the /Downloads directory. Here, we download Hive archive

named “apache-hive-0.14.0-bin.tar.gz” for this tutorial. The following command

is used to verify the download:

$ cd Downloads

$ ls

On successful download, you get to see the following response:

apache-hive-0.14.0-bin.tar.gz

Step 4: Installing Hive

The following steps are required for installing Hive on your system. Let us assume

the Hive archive is downloaded onto the /Downloads directory.

Extracting and verifying Hive Archive

The following command is used to verify the download and extract the hive

archive:

$ tar zxvf apache-hive-0.14.0-bin.tar.gz

$ ls

 On successful download, you get to see the following response:

http://apache.petsads.us/hive/hive-0.14.0/
http://apache.petsads.us/hive/hive-0.14.0/apache-hive-0.14.0-bin.tar.gz

Apache Hive

 16

apache-hive-0.14.0-bin apache-hive-0.14.0-bin.tar.gz

Copying files to /usr/local/hive directory

We need to copy the files from the super user “su -”. The following commands are

used to copy the files from the extracted directory to the /usr/local/hive”

directory.

$ su -

passwd:

cd /home/user/Download

mv apache-hive-0.14.0-bin /usr/local/hive

exit

Setting up environment for Hive

You can set up the Hive environment by appending the following lines to

~/.bashrc file:

export HIVE_HOME=/usr/local/hive

export PATH=$PATH:$HIVE_HOME/bin

export CLASSPATH=$CLASSPATH:/usr/local/Hadoop/lib/*:.

export CLASSPATH=$CLASSPATH:/usr/local/hive/lib/*:.

The following command is used to execute ~/.bashrc file.

$ source ~/.bashrc

Step 5: Configuring Hive

To configure Hive with Hadoop, you need to edit the hive-env.sh file, which is

placed in the $HIVE_HOME/conf directory. The following commands redirect to

Hive config folder and copy the template file:

Apache Hive

 17

$ cd $HIVE_HOME/conf

$ cp hive-env.sh.template hive-env.sh

Edit the hive-env.sh file by appending the following line:

export HADOOP_HOME=/usr/local/hadoop

Hive installation is completed successfully. Now you require an external database

server to configure Metastore. We use Apache Derby database.

Step 6: Downloading and Installing Apache Derby

Follow the steps given below to download and install Apache Derby:

Downloading Apache Derby

The following command is used to download Apache Derby. It takes some time to

download.

$ cd ~

$ wget http://archive.apache.org/dist/db/derby/db-derby-10.4.2.0/db-
derby-10.4.2.0-bin.tar.gz

The following command is used to verify the download:

$ ls

On successful download, you get to see the following response:

db-derby-10.4.2.0-bin.tar.gz

Extracting and verifying Derby archive

The following commands are used for extracting and verifying the Derby archive:

$ tar zxvf db-derby-10.4.2.0-bin.tar.gz

$ ls

On successful download, you get to see the following response:

db-derby-10.4.2.0-bin db-derby-10.4.2.0-bin.tar.gz

Apache Hive

 18

Copying files to /usr/local/derby directory

We need to copy from the super user “su -”. The following commands are used to

copy the files from the extracted directory to the /usr/local/derby directory:

$ su -

passwd:

cd /home/user

mv db-derby-10.4.2.0-bin /usr/local/derby

exit

Setting up environment for Derby

You can set up the Derby environment by appending the following lines to

~/.bashrc file:

export DERBY_HOME=/usr/local/derby

export PATH=$PATH:$DERBY_HOME/bin

export

CLASSPATH=$CLASSPATH:$DERBY_HOME/lib/derby.jar:$DERBY_HOME/lib/derbytool

s.jar

The following command is used to execute ~/.bashrc file:

$ source ~/.bashrc

Create a directory to store Metastore

Create a directory named data in $DERBY_HOME directory to store Metastore

data.

$ mkdir $DERBY_HOME/data

Derby installation and environmental setup is now complete.

Apache Hive

 19

Step 7: Configuring Metastore of Hive

Configuring Metastore means specifying to Hive where the database is stored. You

can do this by editing the hive-site.xml file, which is in the $HIVE_HOME/conf

directory. First of all, copy the template file using the following command:

$ cd $HIVE_HOME/conf

$ cp hive-default.xml.template hive-site.xml

Edit hive-site.xml and append the following lines between the <configuration>

and </configuration> tags:

<property>

<name>javax.jdo.option.ConnectionURL</name>

<value>jdbc:derby://localhost:1527/metastore_db;create=true </value>

<description>JDBC connect string for a JDBC metastore </description>

</property>

Create a file named jpox.properties and add the following lines into it:

javax.jdo.PersistenceManagerFactoryClass =

org.jpox.PersistenceManagerFactoryImpl

org.jpox.autoCreateSchema = false

org.jpox.validateTables = false

org.jpox.validateColumns = false

org.jpox.validateConstraints = false

org.jpox.storeManagerType = rdbms

org.jpox.autoCreateSchema = true

org.jpox.autoStartMechanismMode = checked

org.jpox.transactionIsolation = read_committed

javax.jdo.option.DetachAllOnCommit = true

Apache Hive

 20

javax.jdo.option.NontransactionalRead = true

javax.jdo.option.ConnectionDriverName = org.apache.derby.jdbc.ClientDriver

javax.jdo.option.ConnectionURL =

jdbc:derby://hadoop1:1527/metastore_db;create = true

javax.jdo.option.ConnectionUserName = APP

javax.jdo.option.ConnectionPassword = mine

Step 8: Verifying Hive Installation

Before running Hive, you need to create the /tmp folder and a separate Hive

folder in HDFS. Here, we use the /user/hive/warehouse folder. You need to

set write permission for these newly created folders as shown below:

chmod g+w

Now set them in HDFS before verifying Hive. Use the following commands:

$ $HADOOP_HOME/bin/hadoop fs -mkdir /tmp

$ $HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/warehouse

$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp

$ $HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse

The following commands are used to verify Hive installation:

$ cd $HIVE_HOME

$ bin/hive

On successful installation of Hive, you get to see the following response:

Logging initialized using configuration in jar:file:/home/hadoop/hive-

0.9.0/lib/hive-common-0.9.0.jar!/hive-log4j.properties

Hive history

file=/tmp/hadoop/hive_job_log_hadoop_201312121621_1494929084.txt

………………….

Apache Hive

 21

hive>

The following sample command is executed to display all the tables:

hive> show tables;

OK

Time taken: 2.798 seconds

hive>

Apache Hive

 22

This chapter takes you through the different data types in Hive, which are involved

in the table creation. All the data types in Hive are classified into four types, given

as follows:

1. Column Types

2. Literals

3. Null Values

4. Complex Types

Column Types

Column type are used as column data types of Hive. They are as follows:

Integral Types

Integer type data can be specified using integral data types, INT. When the data

range exceeds the range of INT, you need to use BIGINT and if the data range is

smaller than the INT, you use SMALLINT. TINYINT is smaller than SMALLINT.

The following table depicts various INT data types:

Type Postfix Example

TINYINT Y 10Y

SMALLINT S 10S

INT - 10

BIGINT L 10L

String Types

String type data types can be specified using single quotes (' ') or double quotes

(" "). It contains two data types: VARCHAR and CHAR. Hive follows C-types escape

characters.

3. HIVE DATA TYPES

Apache Hive

 23

The following table depicts various CHAR data types:

Data Type Length

VARCHAR 1 to 65355

CHAR 255

Timestamp

It supports traditional UNIX timestamp with optional nanosecond precision. It

supports java.sql.Timestamp format “YYYY-MM-DD HH:MM:SS.fffffffff” and format

“yyyy-mm-dd hh:mm:ss.ffffffffff”.

Dates

DATE values are described in year/month/day format in the form {{YYYY-MM-

DD}}.

Decimals

The DECIMAL type in Hive is as same as Big Decimal format of Java. It is used for

representing immutable arbitrary precision. The syntax and example is as follows:

DECIMAL(precision, scale)

decimal(10,0)

Union Types

Union is a collection of heterogeneous data types. You can create an instance using

create union. The syntax and example is as follows:

UNIONTYPE<int, double, array<string>, struct<a:int,b:string>>

{0:1}

{1:2.0}

{2:["three","four"]}

{3:{"a":5,"b":"five"}}

{2:["six","seven"]}

{3:{"a":8,"b":"eight"}}

{0:9}

{1:10.0}

Apache Hive

 24

Literals

The following literals are used in Hive:

Floating Point Types

Floating point types are nothing but numbers with decimal points. Generally, this

type of data is composed of DOUBLE data type.

Decimal Type

Decimal type data is nothing but floating point value with higher range than

DOUBLE data type. The range of decimal type is approximately -10-308 to 10308.

Null Value

Missing values are represented by the special value NULL.

Complex Types

The Hive complex data types are as follows:

Arrays

Arrays in Hive are used the same way they are used in Java.

Syntax: ARRAY<data_type>

Maps

Maps in Hive are similar to Java Maps.

Syntax: MAP<primitive_type, data_type>

Structs

Structs in Hive is similar to using complex data with comment.

Syntax: STRUCT<col_name : data_type [COMMENT col_comment], ...>

Apache Hive

 25

Hive is a database technology that can define databases and tables to analyze

structured data. The theme for structured data analysis is to store the data in a

tabular manner, and pass queries to analyze it. This chapter explains how to create

Hive database. Hive contains a default database named default.

Create Database Statement

Create Database is a statement used to create a database in Hive. A database in

Hive is a namespace or a collection of tables. The syntax for this statement is

as follows:

CREATE DATABASE|SCHEMA [IF NOT EXISTS] <database name>;

Here, IF NOT EXISTS is an optional clause, which notifies the user that a database

with the same name already exists. We can use SCHEMA in place of DATABASE in

this command. The following query is executed to create a database named

userdb:

hive> CREATE DATABASE [IF NOT EXISTS] userdb;

or

hive> CREATE SCHEMA userdb;

The following query is used to verify a databases list:

hive> SHOW DATABASES;

default

userdb

JDBC Program

The JDBC program to create a database is given below.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

4. CREATE DATABASE

Apache Hive

 26

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveCreateDb

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/default", "", "");

 Statement stmt = con.createStatement();

 stmt.executeQuery("CREATE DATABASE userdb");

 System.out.println(“Database userdb created successfully.”);

 con.close();

 }

}

Save the program in a file named HiveCreateDb.java. The following commands

are used to compile and execute this program.

$ javac HiveCreateDb.java

$ java HiveCreateDb

Apache Hive

 27

Output:

Database userdb created successfully.

Apache Hive

 28

This chapter describes how to drop a database in Hive. The usage of SCHEMA and

DATABASE are same.

Drop Database Statement

Drop Database is a statement that drops all the tables and deletes the database.

Its syntax is as follows:

DROP DATABASE StatementDROP (DATABASE|SCHEMA) [IF EXISTS] database_name

[RESTRICT|CASCADE];

The following queries are used to drop a database. Let us assume that the

database name is userdb.

hive> DROP DATABASE IF EXISTS userdb;

The following query drops the database using CASCADE. It means dropping

respective tables before dropping the database.

hive> DROP DATABASE IF EXISTS userdb CASCADE;

The following query drops the database using SCHEMA.

hive> DROP SCHEMA userdb;

This clause was added in Hive 0.6.

JDBC Program

The JDBC program to drop a database is given below.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

5. DROP DATABASE

Apache Hive

 29

 public class HiveDropDb

 {

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/default", "", "");

 Statement stmt = con.createStatement();

 stmt.executeQuery("DROP DATABASE userdb");

 System.out.println(“Drop userdb database successful.”);

 con.close();

 }

}

Save the program in a file named HiveDropDb.java. Given below are the

commands to compile and execute this program.

$ javac HiveDropDb.java

$ java HiveDropDb

Output:

Drop userdb database successful.

Apache Hive

 30

This chapter explains how to create a table and how to insert data into it. The

conventions of creating a table in HIVE is quite similar to creating a table using

SQL.

Create Table Statement

Create Table is a statement used to create a table in Hive. The syntax and example

are as follows:

Syntax

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]

table_name

[(col_name data_type [COMMENT col_comment], ...)]

[COMMENT table_comment]

[ROW FORMAT row_format]

[STORED AS file_format]

Example

Let us assume you need to create a table named employee using CREATE TABLE

statement. The following table lists the fields and their data types in employee

table:

Sr. No. Field Name Data Type

1 Eid int

2 Name String

3 Salary Float

4 designation String

6. CREATE TABLE

Apache Hive

 31

The following data is a Comment, Row formatted fields such as Field terminator,

Lines terminator, and Stored File type.

COMMENT ‘Employee details’

FIELDS TERMINATED BY ‘\t’

LINES TERMINATED BY ‘\n’

STORED IN TEXT FILE

The following query creates a table named employee using the above data.

hive> CREATE TABLE IF NOT EXISTS employee (eid int, name String,

 > salary String, destination String)

 > COMMENT ‘Employee details’

 > ROW FORMAT DELIMITED

 > FIELDS TERMINATED BY ‘\t’

 > LINES TERMINATED BY ‘\n’

 > STORED AS TEXTFILE;

If you add the option IF NOT EXISTS, Hive ignores the statement in case the table

already exists.

On successful creation of table, you get to see the following response:

OK

Time taken: 5.905 seconds

hive>

JDBC Program

The JDBC program to create a table is given example.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

Apache Hive

 32

import java.sql.DriverManager;

public class HiveCreateTable

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("CREATE TABLE IF NOT EXISTS "

 +" employee (eid int, name String, "

 +" salary String, destignation String)"

 +" COMMENT ‘Employee details’"

 +" ROW FORMAT DELIMITED"

 +" FIELDS TERMINATED BY ‘\t’"

 +" LINES TERMINATED BY ‘\n’"

Apache Hive

 33

 +" STORED AS TEXTFILE;");

 System.out.println(“ Table employee created.”);

 con.close();

 }

}

Save the program in a file named HiveCreateTable.java. Use the following

commands to compile and execute this program.

$ javac HiveCreateTable.java

$ java HiveCreateTable

Output:

Table employee created.

Load Data Statement

Generally, after creating a table in SQL, we can insert data using the Insert

statement. But in Hive, we can insert data using the LOAD DATA statement.

While inserting data into Hive, it is better to use LOAD DATA to store bulk records.

There are two ways to load data: one is from local file system and second is from

Hadoop file system.

Syntax

The syntax for load data is as follows:

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename

[PARTITION (partcol1=val1, partcol2=val2 ...)]

 LOCAL is identifier to specify the local path. It is optional.

 OVERWRITE is optional to overwrite the data in the table.

 PARTITION is optional.

Example

We will insert the following data into the table. It is a text file named sample.txt

in /home/user directory.

Apache Hive

 34

1201 Gopal 45000 Technical manager

1202 Manisha 45000 Proof reader

1203 Masthanvali 40000 Technical writer

1204 Krian 40000 Hr Admin

1205 Kranthi 30000 Op Admin

The following query loads the given text into the table.

hive> LOAD DATA LOCAL INPATH '/home/user/sample.txt'

 > OVERWRITE INTO TABLE employee;

On successful download, you get to see the following response:

OK

Time taken: 15.905 seconds

hive>

JDBC Program

Given below is the JDBC program to load given data into the table.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveLoadData

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

Apache Hive

 35

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("LOAD DATA LOCAL INPATH '/home/user/sample.txt'"

 +"OVERWRITE INTO TABLE employee;");

 System.out.println("Load Data into employee successful");

 con.close();

 }

}

Save the program in a file named HiveLoadData.java. Use the following commands

to compile and execute this program.

$ javac HiveLoadData.java

$ java HiveLoadData

Output:

Load Data into employee successful

Apache Hive

 36

This chapter explains how to alter the attributes of a table such as changing its

table name, changing column names, adding columns, and deleting or replacing

columns.

Alter Table Statement

It is used to alter a table in Hive.

Syntax

The statement takes any of the following syntaxes based on what attributes we

wish to modify in a table.

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name new_type

ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

Rename To… Statement

The following query renames the table from employee to emp.

hive> ALTER TABLE employee RENAME TO emp;

JDBC Program

The JDBC program to rename a table is as follows.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

7. ALTER TABLE

Apache Hive

 37

import java.sql.DriverManager;

public class HiveAlterRenameTo

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("ALTER TABLE employee RENAME TO emp;");

 System.out.println("Table Renamed Successfully");

 con.close();

 }

}

Save the program in a file named HiveAlterRenameTo.java. Use the following

commands to compile and execute this program.

$ javac HiveAlterRenameTo.java

Apache Hive

 38

$ java HiveAlterRenameTo

Output:

Table renamed successfully.

Change Statement

The following table contains the fields of employee table and it shows the fields

to be changed (in bold).

Field Name Convert from

Data Type

Change Field

Name

Convert to

Data Type

eid int eid int

name String ename String

salary Float salary Double

designation String designation String

The following queries rename the column name and column data type using the

above data:

hive> ALTER TABLE employee CHANGE name ename String;

hive> ALTER TABLE employee CHANGE salary salary Double;

JDBC Program

Given below is the JDBC program to change a column.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

Apache Hive

 39

public class HiveAlterChangeColumn

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("ALTER TABLE employee CHANGE name ename String;");

 stmt.executeQuery("ALTER TABLE employee CHANGE salary salary Double;");

 System.out.println("Change column successful.");

 con.close();

 }

}

Save the program in a file named HiveAlterChangeColumn.java. Use the following

commands to compile and execute this program.

$ javac HiveAlterChangeColumn.java

Apache Hive

 40

$ java HiveAlterChangeColumn

Output:

Change column successful.

Add Columns Statement

The following query adds a column named dept to the employee table.

hive> ALTER TABLE employee ADD COLUMNS (

 > dept STRING COMMENT 'Department name');

JDBC Program

The JDBC program to add a column to a table is given below.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveAlterAddColumn

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

Apache Hive

 41

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("ALTER TABLE employee ADD COLUMNS "

 +" (dept STRING COMMENT 'Department name');");

 System.out.prinln("Add column successful.");

 con.close();

 }

}

Save the program in a file named HiveAlterAddColumn.java. Use the following

commands to compile and execute this program.

$ javac HiveAlterAddColumn.java

$ java HiveAlterAddColumn

Output:

Add column successful.

Replace Statement

The following query deletes all the columns from the employee table and replaces

it with emp and name columns:

hive> ALTER TABLE employee REPLACE COLUMNS (

 > eid INT empid Int,

 > ename STRING name String);

Apache Hive

 42

JDBC Program

Given below is the JDBC program to replace eid column with empid and ename

column with name.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveAlterReplaceColumn

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("ALTER TABLE employee REPLACE COLUMNS "

Apache Hive

 43

 +" (eid INT empid Int,"

 +" ename STRING name String);");

 System.out.println(" Replace column successful");

 con.close();

 }

}

Save the program in a file named HiveAlterReplaceColumn.java. Use the following

commands to compile and execute this program.

$ javac HiveAlterReplaceColumn.java

$ java HiveAlterReplaceColumn

Output:

Replace column successful.

Apache Hive

 44

This chapter describes how to drop a table in Hive. When you drop a table from

Hive Metastore, it removes the table/column data and their metadata. It can be a

normal table (stored in Metastore) or an external table (stored in local file

system); Hive treats both in the same manner, irrespective of their types.

Drop Table Statement

The syntax is as follows:

DROP TABLE [IF EXISTS] table_name;

The following query drops a table named employee:

hive> DROP TABLE IF EXISTS employee;

On successful execution of the query, you get to see the following response:

OK

Time taken: 5.3 seconds

hive>

JDBC Program

The following JDBC program drops the employee table.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveDropTable

{

8. DROP TABLE

Apache Hive

 45

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 stmt.executeQuery("DROP TABLE IF EXISTS employee;");

 System.out.println("Drop table successful.");

 con.close();

 }

}

Save the program in a file named HiveDropTable.java. Use the following

commands to compile and execute this program.

$ javac HiveDropTable.java

$ java HiveDropTable

Apache Hive

 46

Output:

Drop table successful.

The following query is used to verify the list of tables:

hive> SHOW TABLES;

emp

ok

Time taken: 2.1 seconds

hive>

Apache Hive

 47

Hive organizes tables into partitions. It is a way of dividing a table into related

parts based on the values of partitioned columns such as date, city, and

department. Using partition, it is easy to query a portion of the data.

Tables or partitions are sub-divided into buckets, to provide extra structure to

the data that may be used for more efficient querying. Bucketing works based on

the value of hash function of some column of a table.

For example, a table named Tab1 contains employee data such as id, name, dept,

and yoj (i.e., year of joining). Suppose you need to retrieve the details of all

employees who joined in 2012. A query searches the whole table for the required

information. However, if you partition the employee data with the year and store

it in a separate file, it reduces the query processing time. The following example

shows how to partition a file and its data:

The following file contains employeedata table.

/tab1/employeedata/file1

id, name, dept, yoj

1, gopal, TP, 2012

2, kiran, HR, 2012

3, kaleel,SC, 2013

4, Prasanth, SC, 2013

The above data is partitioned into two files using year.

/tab1/employeedata/2012/file2

1, gopal, TP, 2012

2, kiran, HR, 2012

/tab1/employeedata/2013/file3

3, kaleel,SC, 2013

4, Prasanth, SC, 2013

9. PARTITIONING

Apache Hive

 48

Adding a Partition

We can add partitions to a table by altering the table. Let us assume we have a

table called employee with fields such as Id, Name, Salary, Designation, Dept,

and yoj.

Syntax:

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec

[LOCATION 'location1'] partition_spec [LOCATION 'location2'] ...;

partition_spec:

 : (p_column = p_col_value, p_column = p_col_value, ...)

The following query is used to add a partition to the employee table.

hive> ALTER TABLE employee

 > ADD PARTITION (year=’2013’)

 > location '/2012/part2012';

Renaming a Partition

The syntax of this command is as follows.

ALTER TABLE table_name PARTITION partition_spec RENAME TO PARTITION

partition_spec;

The following query is used to rename a partition:

hive> ALTER TABLE employee PARTITION (year=’1203’)

 > RENAME TO PARTITION (Yoj=’1203’);

Dropping a Partition

The following syntax is used to drop a partition:

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec,

PARTITION partition_spec,...;

Apache Hive

 49

The following query is used to drop a partition:

hive> ALTER TABLE employee DROP [IF EXISTS]

 > PARTITION (year=’1203’);

Apache Hive

 50

This chapter explains the built-in operators of Hive. There are four types of

operators in Hive:

1. Relational Operators

2. Arithmetic Operators

3. Logical Operators

4. Complex Operators

Relational Operators

These operators are used to compare two operands. The following table describes

the relational operators available in Hive:

Operator Operand Description

A = B all primitive

types

TRUE if expression A is equivalent to expression

B otherwise FALSE.

A != B all primitive

types

TRUE if expression A is not equivalent to

expression B otherwise FALSE.

A < B all primitive

types

TRUE if expression A is less than expression B

otherwise FALSE.

A <= B all primitive

types

TRUE if expression A is less than or equal to

expression B otherwise FALSE.

A > B all primitive

types

TRUE if expression A is greater than expression

B otherwise FALSE.

A >= B all primitive

types

TRUE if expression A is greater than or equal to

expression B otherwise FALSE.

A IS NULL all types TRUE if expression A evaluates to NULL

otherwise FALSE.

A IS NOT

NULL

all types FALSE if expression A evaluates to NULL

otherwise TRUE.

10. BUILT-IN OPERATORS

Apache Hive

 51

A LIKE B Strings TRUE if string pattern A matches to B otherwise

FALSE.

A RLIKE B Strings NULL if A or B is NULL, TRUE if any substring of

A matches the Java regular expression B ,

otherwise FALSE.

A REGEXP B Strings Same as RLIKE.

Example

Let us assume the employee table is composed of fields named Id, Name, Salary,

Designation, and Dept as shown below. Generate a query to retrieve the employee

details whose Id is 1205.

+------+--------------+-------------+-------------------+--------+

| Id | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

The following query is executed to retrieve the employee details using the above

table:

hive> SELECT * FROM employee WHERE Id=1205;

On successful execution of query, you get to see the following response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

Apache Hive

 52

The following query is executed to retrieve the employee details whose salary is

more than or equal to Rs 40000.

hive> SELECT * FROM employee WHERE Salary>=40000;

On successful execution of query, you get to see the following response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

+------+--------------+-------------+-------------------+--------+

Arithmetic Operators

These operators support various common arithmetic operations on the operands.

All of them return number types. The following table describes the arithmetic

operators available in Hive:

Operators Operand Description

A + B all number types Gives the result of adding A and B.

A - B all number types Gives the result of subtracting B from A.

A * B all number types Gives the result of multiplying A and B.

A / B all number types Gives the result of dividing B from A.

A % B all number types Gives the reminder resulting from dividing A

by B.

A & B all number types Gives the result of bitwise AND of A and B.

A | B all number types Gives the result of bitwise OR of A and B.

A ^ B all number types Gives the result of bitwise XOR of A and B.

Apache Hive

 53

~A all number types Gives the result of bitwise NOT of A.

Example

The following query adds two numbers, 20 and 30.

hive> SELECT 20+30 ADD FROM temp;

On successful execution of the query, you get to see the following response:

+--------+

| ADD |

+--------+

| 50 |

+--------+

Logical Operators

The operators are logical expressions. All of them return either TRUE or FALSE.

Operators Operands Description

A AND B boolean TRUE if both A and B are TRUE, otherwise

FALSE.

A && B boolean Same as A AND B.

A OR B boolean TRUE if either A or B or both are TRUE,

otherwise FALSE.

A || B boolean Same as A OR B.

NOT A boolean TRUE if A is FALSE, otherwise FALSE.

!A boolean Same as NOT A.

Example

The following query is used to retrieve employee details whose Department is TP

and Salary is more than Rs 40000.

Apache Hive

 54

hive> SELECT * FROM employee WHERE Salary>40000 && Dept=TP;

On successful execution of the query, you get to see the following response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

+------+--------------+-------------+-------------------+--------+

Complex Operators

These operators provide an expression to access the elements of Complex Types.

Operator Operand Description

A[n] A is an Array and n

is an int

It returns the nth element in the array A. The

first element has index 0.

M[key] M is a Map<K, V>

and key has type

K

It returns the value corresponding to the key

in the map.

S.x S is a struct It returns the x field of S.

Apache Hive

 55

This chapter explains the built-in functions available in Hive. The functions look

quite similar to SQL functions, except for their usage.

Built-In Functions

Hive supports the following built-in functions:

Return

Type

Signature Description

BIGINT round(double a) It returns the rounded BIGINT value of the double.

BIGINT floor(double a) It returns the maximum BIGINT value that is equal

or less than the double.

BIGINT ceil(double a) It returns the minimum BIGINT value that is equal

or greater than the double.

double rand(), rand(int

seed)

It returns a random number that changes from row

to row.

string concat(string A,

string B,...)

It returns the string resulting from concatenating

B after A.

string substr(string A,

int start)

It returns the substring of A starting from start

position till the end of string A.

string substr(string A,

int start, int

length)

It returns the substring of A starting from start

position with the given length.

string upper(string A) It returns the string resulting from converting all

characters of A to upper case.

string ucase(string A) Same as above.

string lower(string A) It returns the string resulting from converting all

characters of B to lower case.

11. BUILT-IN FUNCTIONS

Apache Hive

 56

string lcase(string A) Same as above.

string trim(string A) It returns the string resulting from trimming

spaces from both ends of A.

string ltrim(string A) It returns the string resulting from trimming

spaces from the beginning (left hand side) of A.

string rtrim(string A) It returns the string resulting from trimming

spaces from the end (right hand side) of A.

string regexp_replace(s

tring A, string B,

string C)

It returns the string resulting from replacing all

substrings in B that match the Java regular

expression syntax with C.

int size(Map<K.V>) It returns the number of elements in the map type.

int size(Array<T>) It returns the number of elements in the array

type.

value of

<type>

cast(<expr> as

<type>)

It converts the results of the expression expr to

<type> e.g. cast('1' as BIGINT) converts the

string '1' to it integral representation. A NULL is

returned if the conversion does not succeed.

string from_unixtime(in

t unixtime)

convert the number of seconds from Unix epoch

(1970-01-01 00:00:00 UTC) to a string

representing the timestamp of that moment in the

current system time zone in the format of "1970-

01-01 00:00:00"

string to_date(string

timestamp)

It returns the date part of a timestamp string:

to_date("1970-01-01 00:00:00") = "1970-01-01"

int year(string date) It returns the year part of a date or a timestamp

string: year("1970-01-01 00:00:00") = 1970,

year("1970-01-01") = 1970

int month(string

date)

It returns the month part of a date or a timestamp

string: month("1970-11-01 00:00:00") = 11,

month("1970-11-01") = 11

int day(string date) It returns the day part of a date or a timestamp

string: day("1970-11-01 00:00:00") = 1,

Apache Hive

 57

day("1970-11-01") = 1

string get_json_object(

string

json_string,

string path)

It extracts json object from a json string based on

json path specified, and returns json string of the

extracted json object. It returns NULL if the input

json string is invalid.

Example

The following queries demonstrate some built-in functions:

round() function

hive> SELECT round(2.6) from temp;

On successful execution of query, you get to see the following response:

2.0

floor() function

hive> SELECT floor(2.6) from temp;

On successful execution of the query, you get to see the following response:

2.0

floor() function

hive> SELECT ceil(2.6) from temp;

On successful execution of the query, you get to see the following response:

3.0

Aggregate Functions

Hive supports the following built-in aggregate functions. The usage of these

functions is as same as the SQL aggregate functions.

Apache Hive

 58

Return

Type

Signature Description

BIGINT count(*),

count(expr),

count(*) - Returns the total number of retrieved

rows.

DOUBLE sum(col),

sum(DISTINCT

col)

It returns the sum of the elements in the group or

the sum of the distinct values of the column in the

group.

DOUBLE avg(col),

avg(DISTINCT

col)

It returns the average of the elements in the

group or the average of the distinct values of the

column in the group.

DOUBLE min(col) It returns the minimum value of the column in the

group.

DOUBLE max(col) It returns the maximum value of the column in

the group.

Apache Hive

 59

This chapter describes how to create and manage views. Views are generated

based on user requirements. You can save any result set data as a view. The usage

of view in Hive is same as that of the view in SQL. It is a standard RDBMS concept.

We can execute all DML operations on a view.

Creating a View

You can create a view at the time of executing a SELECT statement. The syntax is

as follows:

CREATE VIEW [IF NOT EXISTS] view_name [(column_name [COMMENT
column_comment], ...)]

[COMMENT table_comment]

AS SELECT ...

Example

Let us take an example for view. Assume employee table as given below, with the

fields Id, Name, Salary, Designation, and Dept. Generate a query to retrieve the

employee details who earn a salary of more than Rs 30000. We store the result in

a view named emp_30000.

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

12. VIEWS AND INDEXES

Apache Hive

 60

The following query retrieves the employee details using the above scenario:

hive> CREATE VIEW emp_30000 AS

 > SELECT * FROM employee

 > WHERE salary>30000;

Dropping a View

Use the following syntax to drop a view:

DROP VIEW view_name

The following query drops a view named as emp_30000:

hive> DROP VIEW emp_30000;

Creating an Index

An Index is nothing but a pointer on a particular column of a table. Creating an

index means creating a pointer on a particular column of a table. Its syntax is as

follows:

CREATE INDEX index_name

ON TABLE base_table_name (col_name, ...)

AS 'index.handler.class.name'

[WITH DEFERRED REBUILD]

[IDXPROPERTIES (property_name=property_value, ...)]

[IN TABLE index_table_name]

[PARTITIONED BY (col_name, ...)]

[

 [ROW FORMAT ...] STORED AS ...

 | STORED BY ...

]

[LOCATION hdfs_path]

[TBLPROPERTIES (...)]

Apache Hive

 61

Example

Let us take an example for index. Use the same employee table that we have used

earlier with the fields Id, Name, Salary, Designation, and Dept. Create an index

named index_salary on the salary column of the employee table.

The following query creates an index:

hive> CREATE INDEX inedx_salary ON TABLE employee(salary)

 > AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler';

It is a pointer to the salary column. If the column is modified, the changes are

stored using an index value.

Dropping an Index

The following syntax is used to drop an index:

DROP INDEX <index_name> ON <table_name>

The following query drops an index named index_salary:

hive> DROP INDEX index_salary ON employee;

Apache Hive

 62

The Hive Query Language (HiveQL) is a query language for Hive to process and

analyze structured data in a Metastore. This chapter explains how to use the

SELECT statement with WHERE clause.

SELECT statement is used to retrieve the data from a table. WHERE clause works

similar to a condition. It filters the data using the condition and gives you a finite

result. The built-in operators and functions generate an expression, which fulfils

the condition.

Syntax

Given below is the syntax of the SELECT query:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list]]

[LIMIT number];

Example

Let us take an example for SELECT…WHERE clause. Assume we have the employee

table as given below, with fields named Id, Name, Salary, Designation, and Dept.

Generate a query to retrieve the employee details who earn a salary of more than

Rs 30000.

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

13. HIVEQL SELECT…WHERE

Apache Hive

 63

+------+--------------+-------------+-------------------+--------+

The following query retrieves the employee details using the above scenario:

hive> SELECT * FROM employee WHERE salary>30000;

On successful execution of the query, you get to see the following response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

+------+--------------+-------------+-------------------+--------+

JDBC Program

The JDBC program to apply where clause for the given example is as follows.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveQLWhere

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

Apache Hive

 64

 {

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 Resultset res = stmt.executeQuery("SELECT * FROM employee WHERE

 salary>30000;");

 System.out.println("Result:");

 System.out.println(" ID \t Name \t Salary \t Designation \t Dept ");

 while (res.next())

 {

 System.out.println(res.getInt(1)+" "+ res.getString(2)+" "+

 res.getDouble(3)+" "+ res.getString(4)+" "+ res.getString(5));

 }

 con.close();

 }

}

Save the program in a file named HiveQLWhere.java. Use the following commands

to compile and execute this program.

$ javac HiveQLWhere.java

Apache Hive

 65

$ java HiveQLWhere

Output:

 ID Name Salary Designation Dept

 1201 Gopal 45000 Technical manager TP

 1202 Manisha 45000 Proofreader PR

 1203 Masthanvali 40000 Technical writer TP

 1204 Krian 40000 Hr Admin HR

Apache Hive

 66

This chapter explains how to use the ORDER BY clause in a SELECT statement.

The ORDER BY clause is used to retrieve the details based on one column and sort

the result set by ascending or descending order.

Syntax

Given below is the syntax of the ORDER BY clause:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[LIMIT number];

Example

Let us take an example for SELECT...ORDER BY clause. Assume employee table

as given below, with the fields named Id, Name, Salary, Designation, and Dept.

Generate a query to retrieve the employee details in order by using Department

name.

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 40000 | Hr Admin | HR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

14. HIVEQL SELECT…ORDER BY

Apache Hive

 67

The following query retrieves the employee details using the above scenario:

hive> SELECT Id, Name, Dept FROM employee ORDER BY DEPT;

On successful execution of the query, you get to see the following response:

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1205 | Kranthi | 30000 | Op Admin | Admin |

|1204 | Krian | 40000 | Hr Admin | HR |

|1202 | Manisha | 45000 | Proofreader | PR |

|1201 | Gopal | 45000 | Technical manager | TP |

|1203 | Masthanvali| 40000 | Technical writer | TP |

+------+--------------+-------------+-------------------+--------+

JDBC Program

Here is the JDBC program to apply Order By clause for the given example.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveQLOrderBy

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

Apache Hive

 68

 // Register driver and create driver instance

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 // execute statement

 Resultset res = stmt.executeQuery("SELECT * FROM employee ORDER BY

 DEPT;");

 System.out.println(" ID \t Name \t Salary \t Designation \t Dept ");

 while (res.next())

 {

 System.out.println(res.getInt(1)+" "+ res.getString(2)+" "+

 res.getDouble(3)+" "+ res.getString(4)+" "+ res.getString(5));

 }

 con.close();

 }

}

Save the program in a file named HiveQLOrderBy.java. Use the following

commands to compile and execute this program.

$ javac HiveQLOrderBy.java

$ java HiveQLOrderBy

Apache Hive

 69

Output:

ID Name Salary Designation Dept

1205 Kranthi 30000 Op Admin Admin

1204 Krian 40000 Hr Admin HR

1202 Manisha 45000 Proofreader PR

1201 Gopal 45000 Technical manager TP

1203 Masthanvali 40000 Technical writer TP

1204 Krian 40000 Hr Admin HR

Apache Hive

 70

This chapter explains the details of GROUP BY clause in a SELECT statement. The

GROUP BY clause is used to group all the records in a result set using a particular

collection column. It is used to query a group of records.

Syntax

The syntax of GROUP BY clause is as follows:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[LIMIT number];

Example

Let us take an example of SELECT…GROUP BY clause. Assume employee table as

given below, with Id, Name, Salary, Designation, and Dept fields. Generate a

query to retrieve the number of employees in each department.

+------+--------------+-------------+-------------------+--------+

| ID | Name | Salary | Designation | Dept |

+------+--------------+-------------+-------------------+--------+

|1201 | Gopal | 45000 | Technical manager | TP |

|1202 | Manisha | 45000 | Proofreader | PR |

|1203 | Masthanvali| 40000 | Technical writer | TP |

|1204 | Krian | 45000 | Proofreader | PR |

|1205 | Kranthi | 30000 | Op Admin | Admin |

+------+--------------+-------------+-------------------+--------+

15. HIVEQL GROUP BY

Apache Hive

 71

The following query retrieves the employee details using the above scenario.

hive> SELECT Dept,count(*) FROM employee GROUP BY DEPT;

On successful execution of the query, you get to see the following response:

+------+--------------+

| Dept | Count(*) |

+------+--------------+

|Admin | 1 |

|PR | 2 |

|TP | 3 |

+------+--------------+

JDBC Program

Given below is the JDBC program to apply the Group By clause for the given

example.

import java.sql.SQLException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.Statement;

import java.sql.DriverManager;

public class HiveQLGroupBy

{

 private static String driverName =

 "org.apache.hadoop.hive.jdbc.HiveDriver";

 public static void main(String[] args) throws SQLException

 {

 // Register driver and create driver instance

Apache Hive

 72

 Class.forName(driverName);

 // get connection

 Connection con = DriverManager.

 getConnection("jdbc:hive://localhost:10000/userdb", "", "");

 // create statement

 Statement stmt = con.createStatement();

 //execute statement

 Resultset res = stmt.executeQuery(“SELECT Dept,count(*) ”

 +“FROM employee GROUP BY DEPT; ”);

 System.out.println(" Dept \t count(*)");

 while (res.next())

 {

 System.out.println(res.getString(1)+" "+ res.getInt(2));

 }

 con.close();

 }

}

Save the program in a file named HiveQLGroupBy.java. Use the following

commands to compile and execute this program.

$ javac HiveQLGroupBy.java

$ java HiveQLGroupBy

Output:

Apache Hive

 73

Dept Count(*)

Admin 1

PR 2

TP 3

Apache Hive

 74

JOINS is a clause that is used for combining specific fields from two tables by using

values common to each one. It is used to combine records from two or more tables

in the database. It is more or less similar to SQL JOINS.

Syntax

join_table:

 table_reference JOIN table_factor [join_condition]

 | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference

 join_condition

 | table_reference LEFT SEMI JOIN table_reference join_condition

 | table_reference CROSS JOIN table_reference [join_condition]

Example

We will use the following two tables in this chapter. Consider the following table

named CUSTOMERS..

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

16. HIVEQL JOINS

Apache Hive

 75

Consider another table ORDERS as follows:

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+
| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

There are different types of joins given as follows:

 JOIN

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

 FULL OUTER JOIN

JOIN

JOIN clause is used to combine and retrieve the records from multiple tables. JOIN

is same as OUTER JOIN in SQL. A JOIN condition is to be raised using the primary

keys and foreign keys of the tables.

The following query executes JOIN on the CUSTOMER and ORDER tables, and

retrieves the records:

hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT

 > FROM CUSTOMERS c JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+----+----------+-----+--------+
| ID | NAME | AGE | AMOUNT |
+----+----------+-----+--------+
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
+----+----------+-----+--------+

Apache Hive

 76

LEFT OUTER JOIN

The HiveQL LEFT OUTER JOIN returns all the rows from the left table, even if there

are no matches in the right table. This means, if the ON clause matches 0 (zero)

records in the right table, the JOIN still returns a row in the result, but with NULL

in each column from the right table.

A LEFT JOIN returns all the values from the left table, plus the matched values

from the right table, or NULL in case of no matching JOIN predicate.

The following query demonstrates LEFT OUTER JOIN between CUSTOMER and

ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > LEFT OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+----+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+----+----------+--------+---------------------+
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
+----+----------+--------+---------------------+

RIGHT OUTER JOIN

The HiveQL RIGHT OUTER JOIN returns all the rows from the right table, even if

there are no matches in the left table. If the ON clause matches 0 (zero) records

in the left table, the JOIN still returns a row in the result, but with NULL in each

column from the left table.

A RIGHT JOIN returns all the values from the right table, plus the matched values

from the left table, or NULL in case of no matching join predicate.

The following query demonstrates RIGHT OUTER JOIN between the CUSTOMER

and ORDER tables.

Apache Hive

 77

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > RIGHT OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
+------+----------+--------+---------------------+

FULL OUTER JOIN

The HiveQL FULL OUTER JOIN combines the records of both the left and the right

outer tables that fulfil the JOIN condition. The joined table contains either all the

records from both the tables, or fills in NULL values for missing matches on either

side.

The following query demonstrates FULL OUTER JOIN between CUSTOMER and

ORDER tables:

hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE

 > FROM CUSTOMERS c

 > FULL OUTER JOIN ORDERS o

 > ON (c.ID = o.CUSTOMER_ID);

On successful execution of the query, you get to see the following response:

+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL

Apache Hive

 78

7	Muffy	NULL	NULL
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00:00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
+------+----------+--------+---------------------+

